Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bugs as features (part 1): concepts and foundations for the compositional data analysis of the microbiome–gut–brain axis

Abstract

There has been a growing acknowledgment of the involvement of the gut microbiome—the collection of microorganisms that reside in our gut—in regulating our mood and behavior. This phenomenon is referred to as the microbiome–gut–brain axis. Although our techniques to measure the presence and abundance of these microorganisms have been steadily improving, the analysis of microbiome data is non-trivial. Here we present a perspective on the concepts and foundations of data analysis and interpretation of microbiome experiments with a focus on the microbiome–gut–brain axis domain. We give an overview of foundational considerations before commencing analysis alongside the core microbiome analysis approaches of alpha diversity, beta diversity, differential feature abundance and functional inference. We emphasize the compositional data analysis paradigm. Furthermore, this Perspective features an extensive and heavily annotated microbiome analysis in R, as a resource for new and experienced bioinformaticians alike.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of what a typical gut microbiome analysis may look like.
Fig. 2: Understanding alpha and beta diversity.

Similar content being viewed by others

References

  1. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tierney, B. T. et al. The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe 26, 283–295 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Peterson, J. et al. The NIH Human Microbiome Project. Genome Res. 19, 2317–2323 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  PubMed  Google Scholar 

  5. Consortium, H. M. P. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–14 (2012).

    Article  Google Scholar 

  6. Tigchelaar, E. F. et al. Lifelines deep, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5, e006772 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Integrative, H. et al. The Integrative Human Microbiome Project. Nature 569, 641–648 (2019).

    Article  Google Scholar 

  8. Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  PubMed  Google Scholar 

  9. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tomizawa, Y. et al. Effects of psychotropics on the microbiome in patients with depression and anxiety: considerations in a naturalistic clinical setting. Int. J. Neuropsychopharmacol. 24, 97–107 (2020).

    Article  PubMed Central  Google Scholar 

  11. Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364, eaau6323 (2019).

    Article  PubMed  Google Scholar 

  12. Scassellati, C. et al. The complex molecular picture of gut and oral microbiota–brain-–depression system: what we know and what we need to know. Front. Psychiatry 12, 722335 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Simpson, C. A. et al. Oral microbiome composition, but not diversity, is associated with adolescent anxiety and depression symptoms. Physiol. Behav. 226, 113126 (2020).

    Article  PubMed  Google Scholar 

  14. Sureda, A. et al. Oral microbiota and Alzheimer’s disease: do all roads lead to rome? Pharmacol. Res. 151, 104582 (2020).

    Article  PubMed  Google Scholar 

  15. Tonelli, A., Lumngwena, E. N. & Ntusi, N. A. The oral microbiome in the pathophysiology of cardiovascular disease. Nat. Rev. Cardiol. 20, 386–403 (2023).

    Article  PubMed  Google Scholar 

  16. Martinez-Guryn, K. et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23, 458–469 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kastl Jr, A. J., Terry, N. A., Wu, G. D. & Albenberg, L. G. The structure and function of the human small intestinal microbiota: current understanding and future directions. Cell. Mol. Gastroenterol. Hepatol. 9, 33–45 (2020).

    Article  PubMed  Google Scholar 

  18. Kupferschmidt, K. More and more scientists are preregistering their studies. Should you. Science Magazine https://doi.org/10.1126/science.aav4786 (2018).

  19. Munafó, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nosek, B. A., Ebersole, C. R., DeHaven, A. C. & Mellor, D. T. The preregistration revolution. Proc. Natl Acad. Sci. USA 115, 2600–2606 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wagenmakers, E.-J., Wetzels, R., Borsboom, D., van der Maas, H. L. & Kievit, R. A. An agenda for purely confirmatory research. Perspect. Psychol. Sci. 7, 632–638 (2012).

    Article  PubMed  Google Scholar 

  22. Schloss, P. D. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio 9, e00525-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Allen, C. & Mehler, D. M. Open science challenges, benefits and tips in early career and beyond. PLoS Biol. 17, e3000246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bastiaanssen, T. F. S., Quinn, T. P. & Loughman, A. Bugs as features (part 2): a perspective on enriching microbiome–gut–brain axis analyses. Nat. Ment. Health https://doi.org/10.1038/s44220-023-00149-2 (2023).

  26. Ferdous, T. et al. The rise to power of the microbiome: power and sample size calculation for microbiome studies. Mucosal Immunol. 15, 1060–1070 (2022).

    Article  PubMed  Google Scholar 

  27. Dong, T. S. & Gupta, A. Influence of early life, diet, and the environment on the microbiome. Clin. Gastroenterol. Hepatol. 17, 231–242 (2019).

    Article  PubMed  Google Scholar 

  28. Wilson, A. S. et al. Diet and the human gut microbiome: an international review. Dig. Dis. Sci. 65, 723–740 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yap, C. X. et al. Autism-related dietary preferences mediate autism–gut microbiome associations. Cell 184, 5916–5931 (2021).

    Article  PubMed  Google Scholar 

  30. Hernán, M. A., Hsu, J. & Healy, B. A second chance to get causal inference right: a classification of data science tasks. Chance 32, 42–49 (2019).

    Article  Google Scholar 

  31. Zhu, F. et al. Metagenome-wide association of gut microbiome features for schizophrenia. Nat. Commun. 11, 1612 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ponsonby, A.-L. Reflection on modern methods: building causal evidence within high-dimensional molecular epidemiological studies of moderate size. Int. J. Epidemiol. 50, 1016–1029 (2021).

    Article  PubMed  Google Scholar 

  33. Dillies, M.-A. et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 14, 671–683 (2013).

    Article  PubMed  Google Scholar 

  34. McLaren, M. R., Willis, A. D. & Callahan, B. J. Consistent and correctable bias in metagenomic sequencing experiments. eLife 8, e46923 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nearing, J. T., Comeau, A. M. & Langille, M. G. Identifying biases and their potential solutions in human microbiome studies. Microbiome 9, 113 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Erb, I. Power transformations of relative count data as a shrinkage problem. Inf. Geom. 6, 327–354 (2023).

    Article  Google Scholar 

  37. Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002).

    Article  Google Scholar 

  38. Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).

    Google Scholar 

  39. McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Aitchison, J., Barceló-Vidal, C., Martín-Fernández, J. A. & Pawlowsky-Glahn, V. Logratio analysis and compositional distance. Math. Geol. 32, 271–275 (2000).

    Article  Google Scholar 

  41. Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: an outlook and review. Bioinformatics 34, 2870–2878 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hsieh, T. C. & Chao, A. Rarefaction and extrapolation: making fair comparison of abundance-sensitive phylogenetic diversity among multiple assemblages. Syst. Biol. 66, 100–111 (2017).

    PubMed  Google Scholar 

  43. McKnight, D. T. et al. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).

    Article  Google Scholar 

  44. Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 2407 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sepkoski, J. J. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14, 221–234 (1988).

    Article  PubMed  Google Scholar 

  46. Silverman, J. D., Washburne, A. D., Mukherjee, S. & David, L. A. A phylogenetic transform enhances analysis of compositional microbiota data. eLife 6, e21887 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Article  Google Scholar 

  49. Schwengers, O. et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genom. 7, 000685 (2021).

    PubMed  PubMed Central  Google Scholar 

  50. Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. A. ATLAS: a snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. BMC Bioinform. 21, 257 (2020).

    Article  Google Scholar 

  51. Valles-Colomer, M. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632 (2019).

    Article  PubMed  Google Scholar 

  52. Vieira-Silva, S. et al. Species–function relationships shape ecological properties of the human gut microbiome. Nat. Microbiol. 1, 16088 (2016).

    Article  PubMed  Google Scholar 

  53. Mehta, R. S. et al. Stability of the human faecal microbiome in a cohort of adult men. Nat. Microbiol. 3, 347–355 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pasolli, E. et al. Accessible, curated metagenomic data through experimenthub. Nat. Methods 14, 1023–1024 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bharti, R. & Grimm, D. G. Current challenges and best-practice protocols for microbiome analysis. Brief. Bioinform. 22, 178–193 (2019).

    Article  PubMed Central  Google Scholar 

  56. Szóstak, N. et al. The standardisation of the approach to metagenomic human gut analysis: from sample collection to microbiome profiling. Sci. Rep. 12, 8470 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Clooney, A. G. et al. Comparing apples and oranges? Next generation sequencing and its impact on microbiome analysis. PLoS ONE 11, e0148028 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Valles-Colomer, M. et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature 614, 125–135 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Aitchison, J. On criteria for measures of compositional difference. Math. Geol. 24, 365–379 (1992).

  60. Hillmann, B. et al. Evaluating the information content of shallow shotgun metagenomics. mSystems 3, e00069-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Santiago-Rodriguez, T. M. et al. Metagenomic information recovery from human stool samples is influenced by sequencing depth and profiling method. Genes 11, 1380 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. de Goffau, M. C., Charnock-Jones, D. S., Smith, G. & Parkhill, J. Batch effects account for the main findings of an in utero human intestinal bacterial colonization study. Microbiome 9, 6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B 44, 139–160 (1982).

    Google Scholar 

  64. Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Calle, M. L. Statistical analysis of metagenomics data. Genom. Inform. 17, e6 (2019).

    Article  Google Scholar 

  66. Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).

    Article  Google Scholar 

  67. Pearson, K. Mathematical contributions to the theory of evolution—on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–498 (1897).

    Article  Google Scholar 

  68. Quinn, T. P., Richardson, M. F., Lovell, D. & Crowley, T. M. propr: an R-package for identifying proportionally abundant features using compositional data analysis. Sci. Rep. 7, 16252 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lubbe, S., Filzmoser, P. & Templ, M. Comparison of zero replacement strategies for compositional data with large numbers of zeros. Chemometr. Intel. Lab. Syst. 210, 104248 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A.-L. Ponsonby for her expert comments on directed acyclic graphs, D. L. Dahly for his insights on statistical analysis and J. F. Cryan for his continued encouragement and excellent advice. APC Microbiome Ireland is a research center funded by Science Foundation Ireland (SFI), through the Irish Governments’ national development plan (grant no. 12/RC/2273_P2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomaz F. S. Bastiaanssen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion

Supplementary Data 1

Annotated demonstration of a microbiome–gut–brain axis bioinformatics analysis in R Markdown.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastiaanssen, T.F.S., Quinn, T.P. & Loughman, A. Bugs as features (part 1): concepts and foundations for the compositional data analysis of the microbiome–gut–brain axis. Nat. Mental Health 1, 930–938 (2023). https://doi.org/10.1038/s44220-023-00148-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00148-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing