Skip to main content

Advertisement

Log in

Chronic Functional Bowel Syndrome Enhances Gut-Brain Axis Dysfunction, Neuroinflammation, Cognitive Impairment, and Vulnerability to Dementia

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder world wide that lasts for decades. The human gut harbors a diverse population of microbial organisms which is symbiotic and important for well being. However, studies on conventional, germ-free, and obese animals have shown that alteration in normal commensal gut microbiota and an increase in pathogenic microbiota—termed “dysbiosis”, impact gut function, homeostasis, and health. Diarrhea, constipation, visceral hypersensitivity, and abdominal pain arise in IBS from the gut-induced dysfunctional metabolic, immune, and neuro-immune communication. Dysbiosis in IBS is associated with gut inflammation. Gut-related inflammation is pivotal in promoting endotoxemia, systemic inflammation, and neuroinflammation. A significant proportion of IBS patients chronically consume alcohol, non-steroidal anti-inflammatories, and fatty diet; they may also suffer from co-morbid respiratory, neuromuscular, psychological, sleep, and neurological disorders. The above pathophysiological substrate is underpinned by dysbiosis, and dysfunctional bidirectional “Gut-Brain Axis” pathways. Pathogenic gut microbiota-related systemic inflammation (due to increased lipopolysaccharide and pro-inflammatory cytokines, and barrier dysfunction), may trigger neuroinflammation enhancing dysfunctional brain regions including hippocampus and cerebellum. These as well as dysfunctional vago-vagal gut-brain axis may promote cognitive impairment. Indeed, inflammation is characteristic of a broad spectrum of neurodegenerative diseases that manifest demntia. It is argued that an awareness of pathophysiological impact of IBS and implementation of appropriate therapeutic measures may prevent cognitive impairment and minimize vulnerability to dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid beta

AD:

Alzheimer’s disease

ALI:

Acute lung injury

APP:

Amyloid precursor protein

BBB:

Blood–brain barrier

BOLD:

Blood oxygen level-dependent signal

CBF:

Cerebral blood flow

CD:

Celiac disease

CFGD:

Chronic functional gastrointestinal disorders

CgA:

Chromogranin A

CRF:

Corticotropin-releasing factor

CVO:

Circumventricular

DLPFC:

Dorsolateral prefrontal cortex

ENS:

Enteric nervous system

EPSC:

Excitatory postsynaptic currents

GIT:

Gastrointestinal tract

HC:

Healthy control

HF:

Heart failure

HLA:

Human leukocyte antigen

IBS:

Irritable bowel syndrome

IFN-γ:

Interferon gamma

IFL:

Airflow limitation

IL:

Interleukin

IL-1ra:

Interleukin-1 receptor antagonist

LPS:

Lipopolysaccharide

nAChR:

Nicotinic acetylcholine receptor

NAA:

N-acetyl-aspartate

NANC:

Non-adrenergic, non-cholinergic pathway

NCGS:

Non-celiac gluten sensitivity

NFκB:

Nuclear factor kappa B

NFT:

Neurofibrillary tangles

NSAID:

Non-steroidal anti-inflammatorY drug

NTS:

Nucleus tractus solitarius (nucleus of the solitary tract)

PSQI:

Pittsburgh sleep quality index

REM:

Rapid eye movement

SFO:

Subfornical organ

tau :

A microtubule-associated protein

TNF:

Tumor necrosis factor

VNS:

Vagus nerve stimulation

References

  1. Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136:65–80

    PubMed Central  PubMed  Google Scholar 

  2. Zoetendal EG, Vaughan EE, de Vos WM (2006) A microbial world within us. Mol Microbiol 59:1639–1650

    PubMed  CAS  Google Scholar 

  3. Kolling G, Wu M, Guerrant RL (2012) Enteric pathogens through life stages. Front Cell Infect Microbiol 2:114

    PubMed Central  PubMed  Google Scholar 

  4. Wang Y, Gilbreath TM 3rd, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE 6:e24767

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Hooda S, Minamoto Y, Suchodolski JS, Swanson KS (2012) Current state of knowledge: the canine gastrointestinal microbiome. Anim Health Res Rev 13:78–88

    PubMed  Google Scholar 

  6. Vipperla K, O’Keefe SJ (2012) The microbiota and its metabolites in colonic mucosal health and cancer risk. Nutr Clin Pract 27:624–635

    PubMed  Google Scholar 

  7. Greiner T, Bäckhed F (2011) Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab 22:117–123

    PubMed  CAS  Google Scholar 

  8. Bäckhed F (2012) Host responses to the human microbiome. Nutr Rev 70(Suppl 1):S14–S17

    PubMed  Google Scholar 

  9. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712

    PubMed  CAS  Google Scholar 

  10. Tiihonen K, Ouwehand AC, Rautonen N (2010) Effect of overweight on gastrointestinal microbiology and immunology: correlation with blood biomarkers. Br J Nutr 103:1070–1078

    PubMed  CAS  Google Scholar 

  11. Björklund M, Ouwehand AC, Forssten SD, Nikkilä J, Tiihonen K, Rautonen N, Lahtinen SJ (2012) Gut microbiota of healthy elderly NSAID users is selectively modified with the administration of Lactobacillus acidophilus NCFM and lactitol. Age (Dordr) 34:987–999

    Google Scholar 

  12. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108:16050–16055

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Costantini TW, Krzyzaniak M, Cheadle GA, Putnam JG, Hageny AM, Lopez N, Eliceiri BP, Bansal V, Coimbra R (2012) Targeting α-7 nicotinic acetylcholine receptor in the enteric nervous system: a cholinergic agonist prevents gut barrier failure after severe burn injury. Am J Pathol 181:478–486

    PubMed  CAS  Google Scholar 

  14. de Jonge WJ (2013) The Gut’s Little Brain in Control of Intestinal Immunity. ISRN Gastroenterol 2013:630159

    PubMed Central  PubMed  Google Scholar 

  15. Matteoli G, Boeckxstaens GE (2013) The vagal innervation of the gut and immune homeostasis. Gut 62:1214–1222

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312

    PubMed  CAS  Google Scholar 

  17. Collins S, Verdu E, Denou E, Bercik P (2009) The role of pathogenic microbes and commensal bacteria in irritable bowel syndrome. Dig Dis 27(Suppl 1):85–89

    PubMed  Google Scholar 

  18. Collins SM, Denou E, Verdu EF, Bercik P (2009) The putative role of the intestinal microbiota in the irritable bowel syndrome. Dig Liver Dis 41:850–853

    PubMed  CAS  Google Scholar 

  19. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742

    PubMed  CAS  Google Scholar 

  20. Ducrotté P (2009) Irritable bowel syndrome: from the gut to the brain-gut. Gastroenterol Clin Biol 33:703–712

    PubMed  Google Scholar 

  21. Lee BJ, Bak YT (2011) Irritable bowel syndrome, gut microbiota and probiotics. J Neurogastroenterol Motil 17:252–266

    PubMed Central  PubMed  Google Scholar 

  22. Barbara G, Zecchi L, Barbaro R, Cremon C, Bellacosa L, Marcellini M, De Giorgio R, Corinaldesi R, Stanghellini V (2012) Mucosal permeability and immune activation as potential therapeutic targets of probiotics in irritable bowel syndrome. J Clin Gastroenterol 46(Suppl):S52–S55

    PubMed  Google Scholar 

  23. Hughes PA, Zola H, Penttila IA, Blackshaw LA, Andrews JM, Krumbiegel D (2013) Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms? Am J Gastroenterol 108:1066–1074

    PubMed  CAS  Google Scholar 

  24. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23(12):1132–1139

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Bercik P, Collins SM, Verdu EF (2012) Microbes and the gut-brain axis. Neurogastroenterol Motil 24:405–413

    PubMed  CAS  Google Scholar 

  26. Fujiwara Y, Kubo M, Kohata Y, Machida H, Okazaki H, Yamagami H, Tanigawa T, Watanabe K, Watanabe T, Tominaga K, Arakawa T (2011) Cigarette smoking and its association with overlapping gastroesophageal reflux disease, functional dyspepsia, or irritable bowel syndrome. Intern Med 50:2443–2447

    PubMed  Google Scholar 

  27. Reddy YM, Singh D, Nagarajan D, Pillarisetti J, Biria M, Boolani H, Emert M, Chikkam V, Ryschon K,VacekJ, Bommana S, Atkins D, Verma A, Olyaee M, Dawn B, Lakkireddy D (2013) Atrial fibrillation ablation in patients with gastroesophageal reflux disease or irritable bowel syndrome- the heart to gut connection. J Interv Card Electrophysiol 37:259–265

    Google Scholar 

  28. Kaji M, Fujiwara Y, Shiba M, Kohata Y, Yamagami H, Tanigawa T, Watanabe K, Watanabe T, Tominaga K, Arakawa T (2010) Prevalence of overlaps between GERD, FD and IBS and impact on health-related quality of life. J Gastroenterol Hepatol 25:1151–1156

    PubMed  Google Scholar 

  29. Engelhart MJ, Geerlings MI, Meijer J, Kiliaan A, Ruitenberg A, van Swieten JC, Stijnen T, Hofman A, Witteman JC, Breteler MM (2004) Inflammatory proteins in plasma and the risk of dementia: the rotterdam study. Arch Neurol 61:668–672

    PubMed  Google Scholar 

  30. Griffin WS (2006) Inflammation and neurodegenerative diseases. Am J Clin Nutr 83:470S–474S

    PubMed  CAS  Google Scholar 

  31. Churchill L, Taishi P, Wang M, Brandt J, Cearley C, Rehman A, Krueger JM (2006) Brain distribution of cytokine mRNA induced by systemic administration of interleukin-1beta or tumor necrosis factor alpha. Brain Res 1120:64–73

    PubMed  CAS  Google Scholar 

  32. Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7:161–167

    PubMed  CAS  Google Scholar 

  33. Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M, Narvaez A, Honrada R, Ruvalcaba D, McGrath MS (2009) Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 206:121–124

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Zhang R, Miller RG, Madison C, Jin X, Honrada R, Harris W, Katz J, Forshew DA, McGrath MS (2013) Systemic immune system alterations in early stages of Alzheimer’s disease. J Neuroimmunol 256:38–42

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Eikelenboom P, Zhan SS, Van Gool WA, Allsop D (1994) Inflammatory mechanisms in Alzheimer’s disease. Trends Pharmacol Sci 15:447–450

    PubMed  CAS  Google Scholar 

  36. Eikelenboom P, van Exel E, Hoozemans JJ, Veerhuis R, Rozemuller AJ, van Gool WA (2010) Neuroinflammation—an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener Dis 7:38–41

    PubMed  CAS  Google Scholar 

  37. Eikelenboom P, Veerhuis R, van Exel E, Hoozemans JJ, Rozemuller AJ, van Gool WA (2011) The early involvement of the innate immunity in the pathogenesis of late-onset Alzheimer’s disease: neuropathological, epidemiological and genetic evidence. Curr Alzheimer Res 8:142–150

    PubMed  CAS  Google Scholar 

  38. Eikelenboom P, Hoozemans JJ, Veerhuis R, van Exel E, Rozemuller AJ, van Gool WA (2012) Whether, when and how chronic inflammation increases the risk of developing late-onset Alzheimer’s disease. Alzheimers Res Ther 4:15

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Parachikova A, Agadjanyan MG, Cribbs DH, Blurton-Jones M, Perreau V, Rogers J, Beach TG, Cotman CW (2007) Inflammatory changes parallel the early stages of Alzheimer disease. Neurobiol Aging 28:1821–1833

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778

    PubMed  CAS  Google Scholar 

  41. Daulatzai MA (2010) Early stages of pathogenesis in memory impairment during normal senescence and Alzheimer’s disease. J Alzheimers Dis 20:355–367

    PubMed  CAS  Google Scholar 

  42. Daulatzai MA (2010) Conversion of elderly to alzheimer’s dementia: role of confluence of hypothermia and senescent stigmata—the plausible pathway. J Alzheimers Dis 21:1039–1063

    PubMed  CAS  Google Scholar 

  43. Daulatzai MA (2011) Role of sensory stimulation in the amelioration of obstructive sleep apnea. Sleep Disord 2011(2011):596879

    PubMed Central  PubMed  Google Scholar 

  44. Daulatzai MA (2012) Memory and cognitive dysfunctions in Alzheimer’s disease are inextricably intertwined with neuroinflammation due to aging, obesity, obstructive sleep apnea, and other upstream risk factors. In: Costa A, Villalba E (eds) Horizons in neuroscience research. Nova Science Publishers Inc., NY, pp 69–106

    Google Scholar 

  45. Daulatzai MA (2012) Pathogenesis of cognitive dysfunction in patients with obstructive sleep apnea: a hypothesis with emphasis on the nucleus tractus solitarius. Sleep Disord 2012(2012):251096

    PubMed Central  PubMed  Google Scholar 

  46. Daulatzai MA (2012) Neuroinflammation and dysfunctional nucleus tractus solitarius: their role in neuropathogenesis of Alzheimer’s dementia. Neurochem Res 37:846–868

    PubMed  CAS  Google Scholar 

  47. Daulatzai MA (2012) Quintessential risk factors: their role in promoting cognitive dysfunction and Alzheimer’s disease. Neurochem Res 37:2627–2658

    PubMed  CAS  Google Scholar 

  48. Daulatzai MA (2013) Death by a thousand cuts in Alzheimer’s disease: hypoxia: the prodrome. Neurotox Res 24:216–243

    PubMed  Google Scholar 

  49. Daulatzai MA (2013) Neurotoxic saboteurs: straws that break the hippo’s (Hippocampus) back drive cognitive impairment and Alzheimer’s disease. Neurotox Res 24:407–459

    PubMed  CAS  Google Scholar 

  50. Şimşek I (2011) Irritable bowel syndrome and other functional gastrointestinal disorders. J Clin Gastroenterol 45 Suppl: S86-S88

  51. Breckan RK, Asfeldt AM, Straume B, Florholmen J, Paulssen EJ (2012) Prevalence, comorbidity, and risk factors for functional bowel symptoms: a population-based survey in Northern Norway. Scand J Gastroenterol 47:1274–1282

    PubMed  Google Scholar 

  52. Dupont HL (2011) Gastrointestinal infections and the development of irritable bowel syndrome. Curr Opin Infect Dis 24:503–508

    PubMed  Google Scholar 

  53. DuPont AW, DuPont HL (2011) The intestinal microbiota and chronic disorders of the gut. Nat Rev Gastroenterol Hepatol 8:523–531

    PubMed  Google Scholar 

  54. Cremon C, Gargano L, Morselli-Labate AM, Santini D, Cogliandro RF, De Giorgio R, Stanghellini V, Corinaldesi R, Barbara G (2009) Mucosal immune activation in irritable bowel syndrome: gender-dependence and association with digestive symptoms. Am J Gastroenterol 104:392–400

    PubMed  CAS  Google Scholar 

  55. Spiller R, Garsed K (2009) Postinfectious irritable bowel syndrome. Gastroenterology 136:1979–1988

    PubMed  Google Scholar 

  56. Kassinen A, Krogius-Kurikka L, Mäkivuokko H, Rinttilä T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:24–33

    PubMed  CAS  Google Scholar 

  57. Krogius-Kurikka L, Lyra A, Malinen E, Aarnikunnas J, Tuimala J, Paulin L, Mäkivuokko H, Kajander K, Palva A (2009) Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterol 9:95

    PubMed Central  PubMed  Google Scholar 

  58. Lyra A, Rinttilä T, Nikkilä J, Krogius-Kurikka L, Kajander K, Malinen E, Mättö J, Mäkelä L, Palva A (2009) Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J Gastroenterol 15:5936–5945

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Tana C, Umesaki Y, Imaoka A, Handa T, Kanazawa M, Fukudo S (2010) Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil 22:512–519

    PubMed  CAS  Google Scholar 

  60. McKernan DP, Gaszner G, Quigley EM, Cryan JF, Dinan TG (2011) Altered peripheral toll- like receptor responses in the irritable bowel syndrome. Aliment Pharmacol Ther 33:1045–1052

    PubMed  CAS  Google Scholar 

  61. Lee KJ, Tack J (2010) Altered intestinal microbiota in irritable bowel syndrome. Neurogastroenterol Motil 22:493–498

    PubMed  CAS  Google Scholar 

  62. Agrawal A, Whorwell PJ (2008) Review article: abdominal bloating and distension in functional gastrointestinal disorders–epidemiology and exploration of possible mechanisms. Aliment Pharmacol Ther 27:2–10

    PubMed  CAS  Google Scholar 

  63. Barbara G, De Giorgio R, Stanghellini V, Cremon C, Salvioli B, Corinaldesi R (2004) New pathophysiological mechanisms in irritable bowel syndrome. Aliment Pharmacol Ther 20:1–9

    PubMed  Google Scholar 

  64. Walker EA, Gelfand AN, Gelfand MD, Green C, Katon WJ (1996) Chronic pelvic pain and gynecological symptoms in women with irritable bowel syndrome. J Psychosom Obstet Gynaecol 17:39–46

    PubMed  CAS  Google Scholar 

  65. Ozdil K, Sahin A, Calhan T, Kahraman R, Nigdelioglu A, Akyuz U, Sokmen HM (2011) The frequency of microscopic and focal active colitis in patients with irritable bowel syndrome. BMC Gastroenterol 11:96

    PubMed Central  PubMed  Google Scholar 

  66. Stoicescu A, Andrei M, Becheanu G, Stoicescu M, Nicolaie T, Diculescu M (2012) Microscopic colitis and small intestinal bacterial overgrowth–diagnosis behind the irritable bowel syndrome? Rev Med Chir Soc Med Nat Iasi 116:766–772

    PubMed  Google Scholar 

  67. Svedberg P, Johansson S, Wallander MA, Hamelin B, Pedersen NL (2002) Extra-intestinal manifestations associated with irritable bowel syndrome: a twin study. Aliment Pharmacol Ther 16:975–983

    PubMed  CAS  Google Scholar 

  68. Di Berardino F, Filipponi E, Alpini D, O’Bryan T, Soi D, Cesarani A (2013) Ménière disease and gluten sensitivity: Recovery after a gluten-free diet. Am J Otolaryngol 2013 Jan 29. pii: S0196-0709(13)00012-4. doi:10.1016/j.amjoto.2012.12.019

  69. Barghi M (2005) The relation of enuresis and irritable bowel syndrome with premature ejaculation: a preliminary report. Urol J 2:201–205

    PubMed  Google Scholar 

  70. Creed F, Guthrie E (1987) Psychological factors in the irritable bowel syndrome. Gut 28:1307–1318

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Ohman L, Simrén M (2010) Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat Rev Gastroenterol Hepatol 7:163–173

    PubMed  Google Scholar 

  72. El-Salhy M (2012) Irritable bowel syndrome: diagnosis and pathogenesis. World J Gastroenterol 18:5151–5163

    PubMed Central  PubMed  Google Scholar 

  73. El-Salhy M, Wendelbo IH, Gundersen D (2013) Reduced chromogranin a cell density in the ileum of patients with irritable bowel syndrome. Mol Med Rep 7:1241–1244

    PubMed  CAS  Google Scholar 

  74. Wahnschaffe U, Ullrich R, Riecken EO, Schulzke JD (2001) Celiac disease-like abnormalities in a subgroup of patients with irritable bowel syndrome. Gastroenterology 121:1329–1338

    PubMed  CAS  Google Scholar 

  75. Cash BD, Rubenstein JH, Young PE, Gentry A, Nojkov B, Lee D, Andrews AH, Dobhan R, Chey WD (2011) The prevalence of celiac disease among patients with nonconstipated irritable bowel syndrome is similar to controls. Gastroenterology 141:1187–1193

    PubMed Central  PubMed  Google Scholar 

  76. Ford AC, Chey WD, Talley NJ, Malhotra A, Spiegel BM, Moayyedi P (2009) Yield of diagnostic tests for celiac disease in individuals with symptoms suggestive of irritable bowel syndrome: systematic review and meta-analysis. Arch Intern Med 169:651–658

    PubMed  Google Scholar 

  77. Posserud I, Ersryd A, Simrén M (2006) Functional findings in irritable bowel syndrome. World J Gastroenterol 12:2830–2838

    PubMed  Google Scholar 

  78. Larsson MB, Tillisch K, Craig AD, Engström M, Labus J, Naliboff B, Lundberg P, Ström M, Mayer EA, Walter SA (2012) Brain responses to visceral stimuli reflect visceral sensitivity thresholds in patients with irritable bowel syndrome. Gastroenterology 142(463–472):e3

    PubMed  Google Scholar 

  79. Thompson JJ, Elsenbruch S, Harnish MJ, Orr WC (2002) Autonomic functioning during REM sleep differentiates IBS symptom subgroups. Am J Gastroenterol 97:3147–3153

    PubMed  Google Scholar 

  80. Robert JJ, Orr WC, Elsenbruch S (2004) Modulation of sleep quality and autonomic functioning by symptoms of depression in women with irritable bowel syndrome. Dig Dis Sci 49:1250–1258

    PubMed  Google Scholar 

  81. Robert JJ, Elsenbruch S, Orr WC (2006) Sleep-related autonomic disturbances in symptom subgroups of women with irritable bowel syndrome. Dig Dis Sci 51:2121–2127

    PubMed  Google Scholar 

  82. Jarrett ME, Burr RL, Cain KC, Rothermel JD, Landis CA, Heitkemper MM (2008) Autonomic nervous system function during sleep among women with irritable bowel syndrome. Dig Dis Sci 53:694–703

    PubMed  Google Scholar 

  83. Spetalen S, Sandvik L, Blomhoff S, Jacobsen MB (2008) Autonomic function at rest and in response to emotional and rectal stimuli in women with irritable bowel syndrome. Dig Dis Sci 53:1652–1659

    PubMed  Google Scholar 

  84. Mazurak N, Seredyuk N, Sauer H, Teufel M, Enck P (2012) Heart rate variability in the irritable bowel syndrome: a review of the literature. Neurogastroenterol Motil 24:206–216

    PubMed  CAS  Google Scholar 

  85. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Hopkins MJ, Sharp R, Macfarlane GT (2001) Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48:198–205

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Enck P, Zimmermann K, Rusch K, Schwiertz A, Klosterhalfen S, Frick JS (2009) The effects of ageing on the colonic bacterial microflora in adults. Z Gastroenterol 47:653–658

    PubMed  CAS  Google Scholar 

  88. Woodmansey EJ (2007) Intestinal bacteria and ageing. J Appl Microbiol 102:1178–1186

    PubMed  CAS  Google Scholar 

  89. Guigoz Y, Doré J, Schiffrin EJ (2008) The inflammatory status of old age can be nurtured from the intestinal environment. Curr Opin Clin Nutr Metab Care 11:13–20

    PubMed  Google Scholar 

  90. Hébuterne X (2003) Gut changes attributed to ageing: effects on intestinal microflora. Curr Opin Clin Nutr Metab Care 6:49–54

    PubMed  Google Scholar 

  91. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5:e10667

    PubMed Central  PubMed  Google Scholar 

  92. Vazquez-Roque MI, Camilleri M, Smyrk T, Murray JA, O’Neill J, Carlson P, Lamsam J, Eckert D, Janzow D, Burton D, Ryks M, Rhoten D, Zinsmeister AR (2012) Association of HLA-DQ gene with bowel transit, barrier function, and inflammation in irritable bowel syndrome with diarrhea. Am J Physiol Gastrointest Liver Physiol 303:G1262–G1269

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Van Oudenhove L, Demyttenaere K, Tack J, Aziz QB (2004) Central nervous system involvement in functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol 18:663–680

    PubMed  Google Scholar 

  94. Vasina V, Barbara G, Talamonti L, Stanghellini V, Corinaldesi R, Tonini M, De Ponti F, De Giorgio R (2006) Enteric neuroplasticity evoked by inflammation. Auton Neurosci 126–127:264–272

    PubMed  Google Scholar 

  95. Barbara G (2006) Mucosal barrier defects in irritable bowel syndrome. Who left the door open? Am J Gastroenterol 101:1295–1298

    PubMed  Google Scholar 

  96. Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P (2008) The immune geography of IgA induction and function. Mucosal Immunol 1:11–22

    PubMed  CAS  Google Scholar 

  97. Bauer H, Horowitz RE, Levenson SM, Popper H (1963) The response of the lymphatic tissue to the microbial flora. Studies on germ free mice. Am J Pathol 42:471–483

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Bauer H, Paronetto F, Burns WA, Einheber A (1966) The enhancing effect of the microbial flora on macrophage function and the immune response. A study in germ free mice. J Exp Med 123:1013–1024

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Tsuda M, Hosono A, Yanagibashi T, Kihara-Fujioka M, Hachimura S, Itoh K, Hirayama K, Takahashi K, Kaminogawa S (2010) Intestinal commensal bacteria promote T cell hyporesponsiveness and down-regulate the serum antibody responses induced by dietary antigen. Immunol Lett 132:45–52

    PubMed  CAS  Google Scholar 

  100. Tobias PS, Soldau K, Gegner JA, Mintz D, Ulevitch RJ (1995) Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem 270:10482–10488

    PubMed  CAS  Google Scholar 

  101. Beutler B, Hoebe K, Du X, Ulevitch RJ (2003) How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukoc Biol 74:479–485

    PubMed  CAS  Google Scholar 

  102. Baldwin AS Jr (1996) The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    PubMed  CAS  Google Scholar 

  103. Zahorska-Markiewicz B, Janowska J, Olszanecka-Glinianowicz M, Zurakowski (2000) A Serum concentrations of TNF-α and soluble TNF-α receptors in obesity. Int J Obes Relat Metab Disord 24:1392–1395

    PubMed  CAS  Google Scholar 

  104. El-Wakkad A, Hassan N-M, Sibaii H, El-Zayat SR (2013) Proinflammatory, anti- inflammatory cytokines and adiponkines in students with central obesity. Cytokine 61:682–687

    PubMed  CAS  Google Scholar 

  105. Nov O, Shapiro H, Ovadia H, Tarnovscki T, Dvir I, Shemesh E, Kovsan J, Shelef I, Carmi Y, Voronov E, Apte RN, Lewis E, Haim Y, Konrad D, Bashan N, Rudich A (2013) Interleukin-1β regulates fat-liver crosstalk in obesity by auto-paracrine modulation of adipose tissue inflammation and expandability. PLoS ONE 8:e53626

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity- induced insulin resistance in mice lacking TNF-α function. Nature 389:610–614

    PubMed  CAS  Google Scholar 

  107. Pagano G, Pacini G, Musso G, Gambino R, Mecca F, Depetris N, Cassader M, David E, Cavallo-Perin P, Rizzetto M (2002) Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology 35:367–372

    PubMed  CAS  Google Scholar 

  108. Shanab AA, Scully P, Crosbie O, Buckley M, O’Mahony L, Shanahan F, Gazareen S, Murphy E, Quigley EM (2011) Small intestinal bacterial overgrowth in nonalcoholic steatohepatitis: association with toll-like receptor 4 expression and plasma levels of interleukin 8. Dig Dis Sci 56:1524–1534

    PubMed  Google Scholar 

  109. Neal MD, Leaphart C, Levy R, Prince J, Billiar TR, Watkins S, Li J, Cetin S, Ford H, Schreiber A, Hackam DJ (2006) Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 176:3070–3079

    PubMed  CAS  Google Scholar 

  110. Kim KA, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE 7:e47713

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    PubMed  CAS  Google Scholar 

  112. Ibeakanma C, Ochoa-Cortes F, Miranda-Morales M, McDonald T, Spreadbury I, Cenac N, Cattaruzza F, Hurlbut D, Vanner S, Bunnett N, Vergnolle N, Vanner S (2011) Brain-gut interactions increase peripheral nociceptive signaling in mice with postinfectious irritable bowel syndrome. Gastroenterology 141(2098–2108):e5

    PubMed  Google Scholar 

  113. Tougas G (1999) The autonomic nervous system in functional bowel disorders. Can J Gastroenterol 13 Suppl A:15A-17A

  114. Holzer P, Schicho R, Holzer-Petsche U, Lippe IT (2001) The gut as a neurological organ. Wien Klin Wochenschr 113:647–660

    PubMed  CAS  Google Scholar 

  115. Mertz HR (2003) Overview of functional gastrointestinal disorders: dysfunction of the brain- gut axis. Gastroenterol Clin North Am 32:463–476

    PubMed  Google Scholar 

  116. Delvaux M (2004) Alterations of sensori-motor functions of the digestive tract in the pathophysiology of irritable bowel syndrome. Best Pract Res Clin Gastroenterol 18:747–771

    PubMed  CAS  Google Scholar 

  117. Mulak A, Bonaz B (2004) Irritable bowel syndrome: a model of the brain-gut interactions. Med Sci Monit 10:RA55-RA62

    Google Scholar 

  118. Forsythe P, Kunze WA, Bienenstock J (2012) On communication between gut microbes and the brain. Curr Opin Gastroenterol 28:557–562

    PubMed  Google Scholar 

  119. Forsythe P, Kunze WA (2013) Voices from within: gut microbes and the CNS. Cell Mol Life Sci 70:55–69

    PubMed  CAS  Google Scholar 

  120. Crowell MD, Harris L, Jones MP, Chang L (2005) New insights into the pathophysiology of irritable bowel syndrome: implications for future treatments. Curr Gastroenterol Rep 7:272–279

    PubMed  Google Scholar 

  121. Hosoi T, Okuma Y, Nomura Y (2000) Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am J Physiol Regul Integr Comp Physiol 279:R141–R147

    PubMed  CAS  Google Scholar 

  122. Maier SF, Goehler LE, Fleshner M, Watkins LR (1998) The role of the vagus nerve in cytokine-to-brain communication. Ann NY Acad Sci 840:289–300

    PubMed  CAS  Google Scholar 

  123. Berthoud HR, Kressel M, Raybould HE, Neuhuber WL (1991) Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo tracing. Anat Embryol 191:203–212

    Google Scholar 

  124. Rogers RC, McTigue DM, Hermann GE (1995) Vagovagal reflex control of digestion: afferent modulation by neural and “endoneurocrine” factors. Am J Physiol 268:G1–G10

    PubMed  CAS  Google Scholar 

  125. Zhuo H, Ichikawa H, Helke CJ (1997) Neurochemistry of the nodose ganglion. Prog Neurobiol 52:79–107

    PubMed  CAS  Google Scholar 

  126. Browning KN (2003) Excitability of nodose ganglion cells and their role in vago-vagal reflex control of gastrointestinal function. Curr Opin Pharmacol 3:613–617

    PubMed  CAS  Google Scholar 

  127. Browning KN, Mendelowitz D (2003) Musings on the wanderer: what’s new in our understanding of vago-vagal reflexes?: iI Integration of afferent signaling from the viscera by the nodose ganglia. Am J Physiol Gastrointest Liver Physiol 284:G8–G14

    PubMed  CAS  Google Scholar 

  128. Browning KN, Travagli RA (2010) Plasticity of vagal brainstem circuits in the control of gastric function. Neurogastroenterol Motil 22:1154–1163

    PubMed Central  PubMed  CAS  Google Scholar 

  129. Travagli RA, Hermann GE, Browning KN, Rogers RC (2006) Brainstem circuits regulating gastric function. Annu Rev Physiol 68:279–305

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific response to pathogens. Nat Rev Immunol 6:318–328

    PubMed Central  PubMed  CAS  Google Scholar 

  131. Tracey KJ, Czura CJ, Ivanova S (2001) Mind over immunity. Faseb J 15:1575–1576

    PubMed  CAS  Google Scholar 

  132. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    PubMed  CAS  Google Scholar 

  133. Tracey KJ (2007) Physiology and immunology of the cholinergic anti-inflammatory pathway. J Clin Invest 117:289–296

    PubMed Central  PubMed  CAS  Google Scholar 

  134. Borovikova LV, Ivanova S, Zhang M, Yang H, Yang, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    PubMed  CAS  Google Scholar 

  135. Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM (2006) The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131:1122–1130

    PubMed  Google Scholar 

  136. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, Sudan S, Czura CJ, Ivanova SM, Tracey KJ (2002) Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 195:781–788

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, Tracey KJ (2000) Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci 85:141–147

    PubMed  CAS  Google Scholar 

  138. Pavlov VA, Tracey KJ (2005) The cholinergic anti-inflammatory pathway. Brain Behav Immun 19:493–499

    PubMed  CAS  Google Scholar 

  139. Pavlov VA, Ochani M, Yang LH, Gallowitsch-Puerta M, Ochani K, Lin X, Levi J, Parrish WR, Rosas-Ballina M, Czura CJ, Larosa GJ, Miller EJ, Tracey KJ, Al-Abed Y (2007) Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severesepsis. Crit Care Med 35:1139–1144

    PubMed  CAS  Google Scholar 

  140. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388

    PubMed  CAS  Google Scholar 

  141. Matsunaga K, Klein TW, Friedman H, Yamamoto Y (2001) Involvement of nicotinic acetylcholine receptors in suppression of antimicrobial activity and cytokine responses of alveolar macrophages to Legionella pneumophila infection by nicotine. J Immunol 167:6518–6524

    PubMed  CAS  Google Scholar 

  142. Galvis G, Lips KS, Kummer W (2006) Expression of nicotinic acetylcholine receptors on murine alveolar macrophages. J Mol Neurosci 30:107–108

    PubMed  CAS  Google Scholar 

  143. Karimi K, Bienenstock J, Wang L, Forsythe P (2010) The vagus nerve modulates CD4 + T cell activity. Brain Behav Immun 24:316–323

    PubMed  CAS  Google Scholar 

  144. Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, Gallowitsch-Puerta M, Ashok M, Czura CJ, Foxwell B, Tracey KJ, Ulloa L (2006) Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 203:1623–1628

    PubMed Central  PubMed  CAS  Google Scholar 

  145. Huston JM, Rosas-Ballina M, Xue X, Dowling O, Ochani K, Ochani M, Yeboah MM, Chatterjee PK, Tracey KJ, Metz CN (2009) Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol 183:552–559

    PubMed Central  PubMed  CAS  Google Scholar 

  146. Hansen MK, Taishi P, Chen Z, Krueger JM (1998) Vagotomy blocks the induction of interleukin-1beta (IL-1beta) mRNA in the brain of rats in response to systemic IL-1beta. J Neurosci 18:2247–2253

    PubMed  CAS  Google Scholar 

  147. Hansen MK, Nguyen KT, Goehler LE, Gaykema RP, Fleshner M, Maier SF, Watkins LR (2000) Effects of vagotomy on lipopolysaccharide-induced brain interleukin-1beta protein in rats. Auton Neurosci 85:119–126

    PubMed  CAS  Google Scholar 

  148. Van der Zanden EP, Boeckxstaens GE, De Jonge WJ (2009) The vagus nerve as a modulator of intestinal inflammation. Neurogastroenterol Motil 21:6–17

    Google Scholar 

  149. Woiciechowsky C, Schöning B, Daberkow N, Asche K, Stoltenburg G, Lanksch WR, Volk HD (1999) Brain-IL-1beta induces local inflammation but systemic anti-inflammatory response through stimulation of bothhypothalamic-pituitary-adrenal axis and sympathetic nervous system. Brain Res 816:563–571

    PubMed  CAS  Google Scholar 

  150. Puder JJ, Freda PU, Goland RS, Wardlaw SL (2001) Estrogen modulates the hypothalamic- pituitary-adrenal and inflammatory cytokine responses to endotoxin in women. J Clin Endocrinol Metab 86:2403–2408

    PubMed  CAS  Google Scholar 

  151. Beishuizen A, Thijs LG (2003) Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J Endotoxin Res 9:3–24

    PubMed  CAS  Google Scholar 

  152. Hermann GE, Holmes GM, Rogers RC (2005) TNF(alpha) modulation of visceral and spinal sensory processing. Curr Pharm Des 11:1391–1409

    PubMed  CAS  Google Scholar 

  153. Hermann GE, Rogers RC (2008) TNFalpha: a trigger of autonomic dysfunction. Neuroscientist 14:53–67

    PubMed Central  PubMed  CAS  Google Scholar 

  154. van Westerloo DJ, Giebelen IA, Meijers JC, Daalhuisen J, de Vos AF, Levi M, van der Poll T (2006) Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. J Thromb Haemost 4:1997–2002

    PubMed  Google Scholar 

  155. Gidron Y, Kupper N, Kwaijtaal M, Winter J, Denollet J (2007) Vagus-brain communication in atherosclerosis- related inflammation: a neuroimmunomodulationperspective of CAD. Atherosclerosis 195:e1–e9

    PubMed  CAS  Google Scholar 

  156. Erdos B, Kirichenko N, Whidden M, Basgut B, Woods M, Cudykier I, Tawil R, Scarpace PJ, Tumer N (2011) Effect of age on high-fat diet-induced hypertension. Am J Physiol Heart Circ Physiol 301:H164–H172

    PubMed  CAS  Google Scholar 

  157. Adebakin A, Bradley J, Gümüsgöz S, Waters EJ, Lawrence CB (2012) Impaired satiation and increased feeding behaviour in the triple-transgenic Alzheimer’s disease mouse model. PLoS ONE 7:e45179

    PubMed Central  PubMed  CAS  Google Scholar 

  158. Knight EM, Brown TM, Gümüsgöz S, Smith JC, Waters EJ, Allan SM, Lawrence CB (2013) Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice. Dis Model Mech 6:160–170

    PubMed Central  PubMed  CAS  Google Scholar 

  159. Almado CE, Machado BH, Leão RM (2012) Chronic intermittent hypoxia depresses afferent neurotransmission in NTS neurons by a reduction in the number of active synapses. J Neurosci 32:16736–16746

    PubMed  CAS  Google Scholar 

  160. Kwan CL, Diamant NE, Pope G, Mikula K, Mikulis DJ, Davis KD (2005) Abnormal forebrain activity in functional bowel disorder patients with chronic pain. Neurology 65:1268–1277

    PubMed  CAS  Google Scholar 

  161. Chen JY, Blankstein U, Diamant NE, Davis KD (2011) White matter abnormalities in irritable bowel syndrome and relation to individual factors. Brain Res 1392:121–131

    PubMed  CAS  Google Scholar 

  162. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ (2003) The cholinergic anti- inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 9:125–134

    PubMed Central  PubMed  CAS  Google Scholar 

  163. Pavlov VA, Tracey KJ (2004) Neural regulators of innate immune responses and inflammation. Cell Molec Life Sci 61:2322–2331

    PubMed  CAS  Google Scholar 

  164. Riley TP, Neal-McKinney JM, Buelow DR, Konkel ME, Simasko SM (2013) Capsaicin- sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut. J Neuroimmunol 257:36–45

    PubMed  CAS  Google Scholar 

  165. Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA (2005) Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med 202:1023–1029

    PubMed Central  PubMed  CAS  Google Scholar 

  166. Liu CY, Mueller MH, Grundy D, Kreis ME (2007) Vagal modulation of intestinal afferent sensitivity to systemic LPS in the rat. Am J Physiol Gastrointest Liver Physiol 292:G1213–G1220

    PubMed  CAS  Google Scholar 

  167. Yilmaz MS, Goktalay G, Millington WR, Myer BS, Cutrera RA, Feleder C (2008) Lipopolysaccharide-induced hypotension is mediated by a neural pathway involving the vagus nerve, the nucleus tractus solitarius and alpha-adrenergic receptors in the preoptic anterior hypothalamic area. J Neuroimmunol 203:39–49

    PubMed  CAS  Google Scholar 

  168. Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, Manalastas A, Hilfiker M, Pfister S, Schwerdel C, Riether C, Meyer U, Knuesel I (2012) Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation 9:151

    PubMed Central  PubMed  CAS  Google Scholar 

  169. Krstic D, Knuesel I (2013) Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 9:25–34

    PubMed  CAS  Google Scholar 

  170. Hoozemans JJ, Rozemuller AJ, van Haastert ES, Eikelenboom P, van Gool WA (2011) Neuroinflammation in Alzheimer’s disease wanes with age. J Neuroinflammation 8:171

    PubMed Central  PubMed  CAS  Google Scholar 

  171. Ahluwalia N, Vellas B (2003) Immunologic and inflammatory mediators and cognitive decline in Alzheimer’s disease. Immunol Allergy Clin North Am 23:103–115

    PubMed  Google Scholar 

  172. Lin HB, Yang XM, Li TJ, Cheng YF, Zhang HT, Xu JP (2009) Memory deficits and neurochemical changes induced by C-reactive protein in rats: implication in Alzheimer’s disease. Psychopharmacology 204:705–714

    PubMed  CAS  Google Scholar 

  173. Bhamra MS, Ashton NJ (2012) Finding a pathological diagnosis for Alzheimer’s disease: are inflammatory molecules the answer? Electrophoresis 33:3598–3607

    PubMed  CAS  Google Scholar 

  174. Hall JR, Wiechmann AR, Johnson LA, Edwards M, Barber RC, Winter AS, Singh M, O’Bryant SE (2013) Biomarkers of vascular risk, systemic inflammation, and microvascular pathology and neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis 35:363–371

    PubMed Central  PubMed  CAS  Google Scholar 

  175. Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA, O’Banion MK (2013) Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci 33:5053–5064

    PubMed Central  PubMed  CAS  Google Scholar 

  176. Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R (2013) Increased blood- brain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model. Neurobiol Aging 34:2064–2070

    PubMed  CAS  Google Scholar 

  177. Zhao SJ, Guo CN, Wang MQ, Chen WJ, Zhao YB (2012) Serum levels of inflammation factors and cognitive performance in amnestic mild cognitive impairment: a Chinese clinical study. Cytokine 57:221–225

    PubMed  CAS  Google Scholar 

  178. Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 70:373–381

    PubMed  CAS  Google Scholar 

  179. Browne TC, McQuillan K, McManus RM, O’Reilly JA, Mills KH, Lynch MA (2013) IFN-γ production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J Immunol 190:2241–2251

    PubMed  CAS  Google Scholar 

  180. Probert L, Akassoglou K, Kassiotis G, Pasparakis M, Alexopoulou L, Kollias G (1997) TNF- alpha transgenic and knockout models of CNS inflammation and degeneration. J Neuroimmunol 72:137–141

    PubMed  CAS  Google Scholar 

  181. Koyama A, O’Brien J, Weuve J, Blacker D, Metti AL, Yaffe K (2013) The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: a meta-analysis. J Gerontol A Biol Sci Med Sci 68:433–440

    PubMed  CAS  PubMed Central  Google Scholar 

  182. Guo JT, Yu J, Grass D, de Beer FC, Kindy MS (2002) Inflammation-dependent cerebral deposition of serum amyloid a protein in a mouse model of amyloidosis. J Neurosci 22:5900–5909

    PubMed  CAS  Google Scholar 

  183. Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT (2008) Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 5:37

    PubMed Central  PubMed  Google Scholar 

  184. Hirose Y, Imai Y, Nakajima K, Takemoto N, Toya S, Kohsaka S (1994) Glial conditioned medium alters the expression of amyloid precursor protein in SH-SY5Y neuroblastoma cells. Biochem Biophys Res Commun 198:504–509

    PubMed  CAS  Google Scholar 

  185. Buxbaum JD, Oishi M, Chen HI, Pinkas-Kramarski R, Jaffe EA, Gandy SE, Greengard P (1992) Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sci USA 89:10075–10078

    PubMed Central  PubMed  CAS  Google Scholar 

  186. Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, van Leuven F, Heneka MT (2003) Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 23:9796–9804

    PubMed  CAS  Google Scholar 

  187. Blasko I, Marx F, Steiner E, Hartmann T, Grubeck-Loebenstein B (1999) TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. FASEB J 13:63–68

    PubMed  CAS  Google Scholar 

  188. Frings L, Spehl TS, Weber WA, Hüll M, Meyer PT (2013) Amyloid-β load predicts medial temporal lobe dysfunction in alzheimer dementia. J Nucl Med 54:1909–1914

    PubMed  CAS  Google Scholar 

  189. Rodríguez JJ, Noristani HN, Hilditch T, Olabarria M, Yeh CY, Witton J, Verkhratsky A (2013) Increased densities of resting and activated microglia in the dentate gyrus follow senile plaque formation in the CA1 subfield of the hippocampus in the triple transgenic model of Alzheimer’s disease. Neurosci Lett 552:129–134

    PubMed  Google Scholar 

  190. Wright AL, Zinn R, Hohensinn B, Konen LM, Beynon SB, Tan RP, Clark IA, Abdipranoto A, Vissel B (2013) Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS ONE 8:e59586

    PubMed Central  PubMed  CAS  Google Scholar 

  191. Kahn MS, Kranjac D, Alonzo CA, Haase JH, Cedillos RO, McLinden KA, Boehm GW, Chumley MJ (2012) Prolonged elevation in hippocampal Aβ and cognitive deficits following repeated endotoxin exposure in the mouse. Behav Brain Res 229:176–184

    PubMed  CAS  Google Scholar 

  192. Bossù P, Cutuli D, Palladino I, Caporali P, Angelucci F, Laricchiuta D, Gelfo F, De Bartolo P, Caltagirone C, Petrosini L (2012) A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain protein levels of TNF-α and IL- 18. J Neuroinflammation 9:101

    PubMed Central  PubMed  Google Scholar 

  193. Moore AH, Wu M, Shaftel SS, Graham KA, O’Banion MK (2009) Sustained expression of interleukin-1beta in mouse hippocampus impairs spatial memory. Neuroscience 164:1484–1495

    PubMed Central  PubMed  CAS  Google Scholar 

  194. Gasparini L, Rusconi L, Xu H, del Soldato P, Ongini E (2004) Modulation of beta-amyloid metabolism by non-steroidal anti-inflammatory drugs in neuronal cell cultures. J Neurochem 88:337–348

    PubMed  CAS  Google Scholar 

  195. Shaw KN, Commins S, O’Mara SM (2001) Lipopolysaccharide causes deficits in spatial learning in the water maze but not in BDNF expression in the rat dentate gyrus. Behav Brain Res 124:47–54

    PubMed  CAS  Google Scholar 

  196. Sparkman NL, Martin LA, Calvert WS, Boehm GW (2005) Effects of intraperitoneal lipopolysaccharide on morris maze performance in year-old and 2-month-old female C57BL/6 J mice. Behav Brain Res 159:145–151

    PubMed  CAS  Google Scholar 

  197. Turrin NP, Gayle D, Ilyin SE, Flynn MC, Langhans W, Schwartz GJ, Plata-Salamán CR (2001) Pro-inflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide. Brain Res Bull 54:443–453

    PubMed  CAS  Google Scholar 

  198. Lee YJ, Han SB, Nam SY, Oh KW, Hong JT (2010) Inflammation and Alzheimer’s disease. Arch Pharm Res 33:1539–1556

    PubMed  CAS  Google Scholar 

  199. Elsenbruch S, Rosenberger C, Enck P, Forsting M, Schedlowski M, Gizewski ER (2010) Affective disturbances modulate the neural processing of visceral pain stimuli in irritable bowel syndrome: an fMRI study. Gut 59:489–495

    PubMed  CAS  Google Scholar 

  200. Rosenberger C, Thürling M, Forsting M, Elsenbruch S, Timmann D, Gizewski ER (2013) Contributions of the cerebellum to disturbed central processing of visceral stimuli in irritable bowel syndrome. Cerebellum 12:194–198

    PubMed  Google Scholar 

  201. Mandolesi G, Musella A, Gentile A, Grasselli G, Haji N, Sepman H, Fresegna D, Bullitta S, De Vito F, Musumeci G, Di Sanza C, Strata P, Centonze D (2013) Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J Neurosci 33:12105–12121

    PubMed  CAS  Google Scholar 

  202. Plata-Salamán CR, Ilyin SE, Gayle D, Flynn MC (1998) Gram-negative and gram-positive bacterial products induce differential cytokine profiles in the brain: analysis using an integrative molecular-behavioral in vivo model. Int J Mol Med 1:387–397

    PubMed  Google Scholar 

  203. di Penta A, Moreno B, Reix S, Fernandez-Diez B, Villanueva M, Errea O, Escala N, Vandenbroeck K, Comella JX, Villoslada P (2013) Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS ONE 8:e54722

    PubMed Central  PubMed  Google Scholar 

  204. De Smet HJ, Baillieux H, De Deyn PP, Marien P, Paquier P (2007) The cerebellum and language: the story so far. Folia Phoniatr Logop 59:165–170

    PubMed  Google Scholar 

  205. Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    PubMed  CAS  Google Scholar 

  206. Hoffmann LC, Berry SD (2009) Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning. Proc Natl Acad Sci U S A 106:21371–21376

    PubMed Central  PubMed  CAS  Google Scholar 

  207. Wikgren J, Nokia MS, Penttonen M (2010) Hippocampo-cerebellar theta band phase synchrony in rabbits. Neuroscience 165:1538–1545

    PubMed  CAS  Google Scholar 

  208. Rochefort C, Lefort JM, Rondi-Reig L (2013) The cerebellum: a new key structure in the navigation system. Front Neural Circuits 7:35

    PubMed Central  PubMed  Google Scholar 

  209. Rochefort C, Arabo A, André M, Poucet B, Save E, Rondi-Reig L (2011) Cerebellum shapes hippocampal spatial code. Science 334(6054):385–389

    PubMed  CAS  Google Scholar 

  210. Passot JB, Sheynikhovich D, Duvelle É, Arleo A (2012) Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory. PLoS ONE 7:e32560

    PubMed Central  PubMed  CAS  Google Scholar 

  211. Balsters JH, Whelan CD, Robertson IH, Ramnani N (2013) Cerebellum and cognition: evidence for the encoding of higher order rules. Cereb Cortex 23:1433–1443

    PubMed  Google Scholar 

  212. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    PubMed  Google Scholar 

  213. Martin KL, Blizzard L, Wood AG, Srikanth V, Thomson R, Sanders LM, Callisaya ML (2013) Cognitive function, gait, and gait variability in older people: a population-based study. J Gerontol A Biol Sci Med Sci 68:726–732

    PubMed  Google Scholar 

  214. Koch G, Mori F, Marconi B, Codecà C, Pecchioli C, Salerno S, Torriero S, Lo Gerfo E, Mir P, Oliveri M, Caltagirone C (2008) Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol 119:2559–2569

    PubMed  Google Scholar 

  215. Koch G, Brusa L, Carrillo F, Lo Gerfo E, Torriero S, Oliveri M, Mir P, Caltagirone C, Stanzione P (2009) Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology 73:113–119

    PubMed  CAS  Google Scholar 

  216. Di Lorenzo F, Martorana A, Ponzo V, Bonnì S, D’Angelo E, Caltagirone C, Koch G (2013) Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer’s disease patients. Front Aging Neurosci 5:2

    PubMed Central  PubMed  Google Scholar 

  217. Finkelstein Y, Wolff M, Biegon A (1988) Brain acetylcholinesterase after parathion poisoning: a comparative quantitative histochemical analysis post-mortem. Toxicology 49:165–169

    PubMed  CAS  Google Scholar 

  218. Turner JR, Ortinski PI, Sherrard RM, Kellar KJ (2011) Cerebellar nicotinic cholinergic receptors are intrinsic to the cerebellum: implications for diverse functional roles. Cerebellum 10:748–757

    PubMed  CAS  Google Scholar 

  219. D’Angelo E, Casali S (2012) Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits 6:116

    PubMed Central  PubMed  Google Scholar 

  220. Okamura N, Funaki Y, Tashiro M, Kato M, Ishikawa Y, Maruyama M, Ishikawa H, Meguro K, Iwata R, Yanai K (2008) In vivo visualization of donepezil binding in the brain of patients with Alzheimer’s disease. Br J Clin Pharmacol 65:472–479

    PubMed Central  PubMed  CAS  Google Scholar 

  221. Larner AJ (1997) The cerebellum in Alzheimer’s disease. Dement Geriatr Cogn Disord 8:203–209

    PubMed  CAS  Google Scholar 

  222. Sjöbeck M, Englund E (2001) Alzheimer’s disease and the cerebellum: a morphologic study on neuronal and glial changes. Dement Geriatr Cogn Disord 12:211–218

    PubMed  Google Scholar 

  223. Stępień T, Wierzba-Bobrowicz T, Lewandowska E, Szpak G (2012) Morphological and quantitative analysis of cerebellar cortical cells in Alzheimer’s disease. Folia Neuropathol 50:250–260

    PubMed  Google Scholar 

  224. Mavroudis IA, Fotiou DF, Adipepe LF, Manani MG, Njau SD, Psaroulis D, Costa VG, Baloyannis SJ (2010) Morphological changes of the human purkinje cells and deposition of neuritic plaques and neurofibrillary tangles on the cerebellar cortex of Alzheimer’s disease. Am J Alzheimers Dis Other Demen 25:585–591

    PubMed  Google Scholar 

  225. Wegiel J, Wisniewski HM, Dziewiatkowski J, Badmajew E, Tarnawski M, Reisberg B, Mlodzik B, De Leon MJ, Miller DC (1999) Cerebellar atrophy in Alzheimer’s disease- clinicopathological correlations. Brain Res 818:41–50

    PubMed  CAS  Google Scholar 

  226. Mattiace LA, Davies P, Yen SH, Dickson DW (1990) Microglia in cerebellar plaques in Alzheimer’s disease. Acta Neuropathol 80:493–498

    PubMed  CAS  Google Scholar 

  227. Baldaçara L, Borgio JG, Moraes WA, Lacerda AL, Montaño MB, Tufik S, Bressan RA, Ramos LR, Jackowski AP (2011) Cerebellar volume in patients with dementia. Rev Bras Psiquiatr 33:122–129

    PubMed  Google Scholar 

  228. Andersen K, Andersen BB, Pakkenberg B(2012) Stereological quantification of the cerebellum in patients with Alzheimer’s disease. Neurobiol Aging 33:197.e11-e20

    Google Scholar 

  229. Thomann PA, Schlafer C, Seidl U, Santos VD, Essig M, Schroder J (2008) The cerebellum in mild cognitive impairment and Alzheimer’s disease—a structural MRI study. J Psychiatr Res 42:1198–1202

    PubMed  Google Scholar 

  230. Möller C, Vrenken H, Jiskoot L, Versteeg A, Barkhof F, Scheltens P, van der Flier WM (2013) Different patterns of gray matter atrophy in early- and late-onset Alzheimer’s disease. Neurobiol Aging 34:2014–2022

    PubMed  Google Scholar 

  231. Chen J, Cohen ML, Lerner AJ, Yang Y, Herrup K (2010) DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer’s disease. Mol Neurodegener 5:60

    PubMed Central  PubMed  Google Scholar 

  232. Hauser T, Schönknecht P, Thomann PA, Gerigk L, Schröder J, Henze R, Radbruch A, Essig M (2013) Regional cerebral perfusion alterations in patients with mild cognitive impairment and Alzheimer disease using dynamic susceptibility contrast MRI. Acad Radiol 20:705–711

    PubMed  Google Scholar 

  233. McLaren DG, Sreenivasan A, Diamond EL, Mitchell MB, Van Dijk KR, Deluca AN, O’Brien JL, Rentz DM, Sperling RA, Atri A (2012) Tracking cognitive change over 24 weeks with longitudinal functional magnetic resonance imaging in Alzheimer’s disease. Neurodegener Dis 9:176–186

    PubMed Central  PubMed  CAS  Google Scholar 

  234. Drummond ES, Muhling J, Martins RN, Wijaya LK, Ehlert EM, Harvey AR (2013) Pathology associated with AAV mediated expression of beta amyloid or C100 in adult mouse hippocampus and cerebellum. PLoS ONE 8:e59166

    PubMed Central  PubMed  CAS  Google Scholar 

  235. Braak H, Braak E, Bohl J, Lang W (1989) Alzheimer’s disease: amyloid plaques in the cerebellum. J Neurol Sci 93:277–287

    PubMed  CAS  Google Scholar 

  236. Joachim CL, Morris JH, Selkoe DJ (1989) Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 135:309–319

    PubMed Central  PubMed  CAS  Google Scholar 

  237. Dickson DW, Wertkin A, Mattiace LA, Fier E, Kress Y, Davies P, Yen SH (1990) Ubiquitin immunoelectron microscopy of dystrophic neurites in cerebellar senile plaques of Alzheimer’s disease. Acta Neuropathol 79:486–493

    PubMed  CAS  Google Scholar 

  238. Fukutani Y, Cairns NJ, Rossor MN, Lantos PL (1996) Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer’s disease. Neurosci Lett 214:33–36

    PubMed  CAS  Google Scholar 

  239. Cerejeira J, Firmino H, Vaz-Serra A, Mukaetova-Ladinska EB (2010) The neuroinflammatory hypothesis of delirium. Acta Neuropathol 119:737–754

    PubMed  Google Scholar 

  240. Cunningham C (2011) Systemic inflammation and delirium:important co-factors in the progression of dementia. Biochem Soc Trans 39:945–953

    PubMed  CAS  Google Scholar 

  241. Cunningham C, MacLullich AMJ (2013) At the extreme end of the psychoneuroimmunological spectrum: delirium as a maladaptive sickness behaviour response. Brain Behavior Immunity 28:1–13

    Google Scholar 

  242. Murray C, Sanderson DJ, Barkus C, Deacon RMJ, Rawlins JNP, Bannerman DM, Cunningham C (2012) Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium. Neurobiol Aging 33(603–616):e3

    PubMed  Google Scholar 

  243. Dunn AJ, Berridge CW (1990) Physiological and behavioral-responses to corticotropin- releasing factor administration—is Crf a mediator of anxiety or stress responses. Brain Res Rev 15:71–100

    PubMed  CAS  Google Scholar 

  244. Vale W, Spiess J, Rivier C et al (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213:1394–1397

    PubMed  CAS  Google Scholar 

  245. Heim C, Nemeroff CB (2009) Neurobiology of posttraumatic stress disorder. CNS Spectr 14:13–24

    PubMed  Google Scholar 

  246. Fukudo S (2007) Role of corticotropin-releasing hormone in irritable bowel syndrome and intestinal inflammation. J Gastroenterol 42:48–51

    PubMed  CAS  Google Scholar 

  247. Stahl SM, Wise DD (2008) The potential role of a corticotropin-releasing factor receptor-1 antagonist in psychiatric disorders. CNS Spectr 13:467–472

    PubMed  Google Scholar 

  248. Taché Y, Kiank C, Stengel A (2009) A role for corticotropin-releasing factor in functional gastrointestinal disorders. Curr Gastroenterol Rep 11:270–277

    PubMed  Google Scholar 

  249. Labus JS, Hubbard CS, Bueller J, Ebrat B, Tillisch K, Chen M, Stains J, Dukes GE, Kelleher DL, Naliboff BD, Fanselow M, Mayer EA (2013) Impaired emotional learning and involvement of the corticotropin-releasing factor signaling system in patients with irritable bowel syndrome. Gastroenterology 145(1253–1261):e3

    Google Scholar 

  250. Hubbard CS, Labus JS, Bueller J et al (2011) Corticotropin-releasing factor receptor 1 antagonist alters regional activation and effective connectivity in an emotional-arousal circuit during expectation of abdominal pain. J Neurosci 31:12491–12500

    PubMed Central  PubMed  CAS  Google Scholar 

  251. Mayer EA (2000) The neurobiology of stress and gastrointestinal disease. Gut 47:861–869

    PubMed Central  PubMed  CAS  Google Scholar 

  252. Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC (2006) Functional bowel disorders. Gastroenterology 130:1480–1491

    PubMed  Google Scholar 

  253. Martinez V, Taché Y (2006) CRF1 receptors as a therapeutic target for irritable bowel syndrome. Curr Pharm Des 12:4071–4088

    PubMed  CAS  Google Scholar 

  254. Phelps EA, O’Connor KJ, Gatenby JC, Gore JC, Grillon C, Davis M (2001) Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci 4:437–441

    PubMed  CAS  Google Scholar 

  255. Simpson JR, Drevets WC, Snyder AZ, Gusnard DA, Raichle ME (2001) Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Proc Natl Acad Sci USA 98:688–693

    PubMed Central  PubMed  CAS  Google Scholar 

  256. Straube T, Schmidt S, Weiss T, Mentzel HJ, Miltner WHR (2009) Dynamic activation of the anterior cingulate cortex during anticipatory anxiety. Neuroimage 44:975–981

    PubMed  Google Scholar 

  257. Taché Y, Martinez V, Wang L, Million M (2004) CRF1 receptor signaling pathways are involved in stress-related alterations of colonic function and viscerosensitivity: implications for irritable bowel syndrome. Br J Pharmacol 141:1321–1330

    PubMed Central  PubMed  Google Scholar 

  258. Kamada N, Grace Chen G, Núñez G (2012) A complex microworld in the gut: harnessing pathogen-commensal relations. Nat Med 18:1190–1191

    PubMed  CAS  Google Scholar 

  259. Christmas D, Steele JD, Tolomeo S, Eljamel MS, Matthews K (2013) Vagus nerve stimulation for chronic major depressive disorder: 12-month outcomes in highly treatment-refractory patients. J Affect Disord 2013 Jun 28. pii: S0165-0327(13)00459-X. doi:10.1016/j.jad.2013.05.080. [Epub ahead of print]

  260. Marras CE, Chiesa V, De Benedictis A, Franzini A, Rizzi M, Villani F, Ragona F, Tassi L, Vignoli A, Freri E, Specchio N, Broggi G, Casazza M, Canevini MP (2013) Vagus nerve stimulation in refractory epilepsy: new indications and outcome assessment. Epilepsy Behav 28:374–378

    PubMed  Google Scholar 

  261. Chen C, Zhang Y, Du Z, Zhang M, Niu L, Wang Y, Li J (2013) Vagal Efferent Fiber Stimulation Ameliorates Pulmonary Microvascular Endothelial Cell Injury by Downregulating Inflammatory Responses. Inflammation 2013 Aug 4. [Epub ahead of print]

  262. Hamann JJ, Ruble SB, Stolen C, Wang M, Gupta RC, Rastogi S, Sabbah HN (2013) Vagus nerve stimulation improves left ventricular function in a canine model of chronic heart failure. Eur J Heart Fail. 2013 Jul 24 [Epub ahead of print]

  263. Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR, Mazgalev TN (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2:692–699

    PubMed  CAS  Google Scholar 

  264. Zhou H, Liang H, Li ZF, Xiang H, Liu W, Li JG (2013) Vagus nerve stimulation attenuates intestinal epithelial tight junctions disruption in endotoxemic mice through α7 nicotinic acetylcholine receptors. Shock 40:144–151

    PubMed  CAS  Google Scholar 

  265. Zhang Y, Ilsar I, Sabbah HN, Ben David T, Mazgalev TN (2009) Relationship between right cervical vagus nerve stimulation and atrial fibrillation inducibility: therapeutic intensities do not increase arrhythmogenesis. Heart Rhythm 6:244–250

    PubMed  Google Scholar 

  266. He W, Jing X, Wang X, Rong P, Li L, Shi H, Shang H, Wang Y, Zhang J, Zhu B (2013) Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy Behav 28:343–346

    PubMed  Google Scholar 

  267. Groves DA, Brown VJ (2005) Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev 29:493–500

    PubMed  Google Scholar 

  268. Petrov T, Howarth AG, Krukoff TL, Stevenson BR (1994) Distribution of the tight junction- associated protein ZO-1 in circumventricular organs of the CNS. Mol Brain Res 21:235–246

    PubMed  CAS  Google Scholar 

  269. Desson SE, Ferguson AV (2003) Interleukin 1β modulates rat subfornical organ neurons as a result of activation of a non-selective cationic conductance. J Physiol 550:113–122

    PubMed Central  PubMed  CAS  Google Scholar 

  270. Roth J, Harré EM, Rummel C, Gerstberger R, Hübschle T (2004) Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Front Biosci 9:290–300

    PubMed  CAS  Google Scholar 

  271. Ott D, Murgott J, Rafalzik S, Wuchert F, Schmalenbeck B, Roth J, Gerstberger R (2010) Neurons and glial cells of the rat organum vasculosum laminae terminalis directly respond to lipopolysaccharide and pyrogenic cytokines. Brain Res 1363:93–106

    PubMed  CAS  Google Scholar 

  272. Smith PM, Ferguson AV (2010) Circulating signals as critical regulators of autonomic state– central roles for the subfornical organ. Am J Physiol Regul Integr Comp Physiol 299:R405–R4015

    PubMed  CAS  Google Scholar 

  273. Maolood N, Meister B (2009) Protein components of the blood-brain barrier (BBB) in the brainstem area postrema-nucleus tractus solitarius region. J Chem Neuroanat 37:182–195

    PubMed  CAS  Google Scholar 

  274. Banks WA, Kastin AJ, Broadwell RD (1995) Passage of cytokines across the blood-brain barrier. NeuroImmunoModulation 2:241–248

    PubMed  CAS  Google Scholar 

  275. Ilyin SE, Gayle D, Flynn MC, Plata-Salamán CR (1998) Interleukin-1beta system (ligand, receptor type I, receptor accessory protein and receptor antagonist), TNF-alpha, TGF- beta1 and neuropeptide Y mRNAs in specific brain regions during bacterial LPS-induced anorexia. Brain Res Bull 45:507–515

    PubMed  CAS  Google Scholar 

  276. Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, Rosi S (2012) TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation 9:23

    PubMed Central  PubMed  CAS  Google Scholar 

  277. Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO (2012) Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation 9:199

    PubMed Central  PubMed  CAS  Google Scholar 

  278. Chodobski A, Szmydynger-Chodobska J (2001) Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech 52:65–82

    PubMed  CAS  Google Scholar 

  279. Szmydynger-Chodobska J, Gandy JR, Varone A, Shan R, Chodobski A (2013) Synergistic interactions between cytokines and avp at the blood-csf barrier result in increased chemokine production and augmented influx of leukocytes after brain injury. PLoS ONE 8:e79328

    PubMed Central  PubMed  CAS  Google Scholar 

  280. Erickson MA, Banks WA (2013) Blood–brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cerebr Blood Flow Metabol 33:1500–1513

    CAS  Google Scholar 

  281. Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B (2011) Leucocyte–endothelial cell crosstalk at the blood–brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37:24–39

    PubMed  CAS  Google Scholar 

  282. Ryu JK, McLarnon JG (2009) A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med 13:2911–2925

    PubMed  CAS  Google Scholar 

  283. Rotem AY, Sperber AD, Krugliak P, Freidman B, Tal A, Tarasiuk A (2003) Polysomnographic and actigraphic evidence of sleep fragmentation in patients with irritable bowel syndrome. Sleep 26:747–752

    PubMed  Google Scholar 

  284. Kumar D, Thompson PD, Wingate DL, Vesselinova-Jenkins CK, Libby G (1992) Abnormal REM sleep in the irritable bowel syndrome. Gastroenterology 103:12–17

    PubMed  CAS  Google Scholar 

  285. Shen F, Zhou H, Chen G, Song L, Liu Y, Yang L, Chen L, Li D (2011) Evaluation of Pittsburgh sleep quality index in assessing patients with irritable bowel syndrome. Chin J Gastroenterol 16:19–21

    Google Scholar 

  286. Gold AR, Broderick JE, Amin MM, Gold MS (2009) Inspiratory airflow dynamics during sleep in irritable bowel syndrome: a pilot study. Sleep Breath 13:397–407

    PubMed  Google Scholar 

  287. Labus JS, Dinov ID, Jiang Z, Ashe-McNalley C, Zamanyan A, Shi Y, Hong JY, Gupta A, Tillisch K, Ebrat B, Hobel S, Gutman BA, Joshi S, Thompson PM, Toga AW, Mayer EA (2014) Irritable bowel syndrome in female patients is associated with alterations in structural brain networks. Pain 155:137–149

    PubMed  Google Scholar 

  288. Jiang Z, Dinov ID, Labus J, Shi Y, Zamanyan A, Gupta A, Ashe-McNalley C, Hong JY, Tillisch K, Toga AW, Mayer EA (2013) Sex-related differences of cortical thickness in patients with chronic abdominal pain. PLoS One 8:e73932

    PubMed Central  PubMed  CAS  Google Scholar 

  289. Aizawa E, Sato Y, Kochiyama T, Saito N, Izumiyama M, Morishita J, Kanazawa M, Shima K, Mushiake H, Hongo M, Fukudo S (2012) Altered cognitive function of prefrontal cortex during error feedback in patients with irritable bowel syndrome, based on FMRI and dynamic causal modeling. Gastroenterology 143:1188–1198

    PubMed  Google Scholar 

  290. Niddam DM, Tsai S-Y, Lu C-L, Ko C-W, Hsieh J-C (2011) Reduced hippocampal glutamate-glutamine levels in irritable bowel syndrome: preliminary findings using magnetic resonance spectroscopy. Am J Gastroenterol 106:1503–1511

    PubMed  CAS  Google Scholar 

  291. Steinbach S, Reindl W, Kessel C, Ott R, Zahnert T, Hundt W, Heinrich P, Saur D, Huber W (2010) Olfactory and gustatory function in irritable bowel syndrome. Eur Arch Otorhinolaryngol 267:1081–1087

    PubMed  Google Scholar 

  292. Seminowicz DA, Labus JS, Bueller JA, Tillisch K, Naliboff BD, Bushnell MC, Mayer EA (2010) Regional gray matter density changes in brains of patients with irritable bowel syndrome. Gastroenterology 139(48–57):e2

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mak Adam Daulatzai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daulatzai, M.A. Chronic Functional Bowel Syndrome Enhances Gut-Brain Axis Dysfunction, Neuroinflammation, Cognitive Impairment, and Vulnerability to Dementia. Neurochem Res 39, 624–644 (2014). https://doi.org/10.1007/s11064-014-1266-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1266-6

Keywords

Navigation