Skip to main content
Log in

Revealing the role of electrode potential micro-environments in single Mn atoms for carbon dioxide and oxygen electrolysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Elucidation the relationship between electrode potentials and heterogeneous electrocatalytic reactions has attracted widespread attention. Herein we construct the well-defined Mn single-atom (MnSA) catalyst with four N-coordination through a simple thermal pyrolysis preparation method to investigate the electrode potential micro-environments effect on carbon dioxide reduction reactions (CO2RR) and oxygen reduction reactions (ORR). MnSA catalysts generate higher CO production Faradaic efficiency of exceeding 90% at −0.9 V for CO2RR and higher H2O2 yield from 0.1 to 0.6 V with excellent ORR activity. Density functional theory (DFT) calculations based on constant potential models were performed to study the mechanism of MnSA on CO2RR. The thermodynamic energy barrier of CO2RR is lowest at −0.9 V vs. reversible hydrogen electrode (RHE). Similar DFT calculations on the H2O2 yield of ORR showed that the H2O2 yield at 0.2 V was higher. This study provides a reasonable explanation for the role of electrode potential micro-environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhang, Q.; Lian, K.; Liu, Q.; Qi, G. C.; Zhang, S. S.; Luo, J.; Liu, X. J. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J. Colloid Interface Sci. 2023, 646, 844–854.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, K. L.; Huang, D. Y.; Guan, Y. C.; Liu, F.; He, J.; Ding, Y. Fine-tuning the electronic structure of dealloyed PtCu nanowires for efficient methanol oxidation reaction. ACS Catal. 2021, 11, 14428–14438.

    Article  CAS  Google Scholar 

  3. Shi, S.; Wen, X. L.; Sang, Q. Q.; Yin, S.; Wang, K. L.; Zhang, J.; Hu, M.; Yin, H. M.; He, J.; Ding, Y. Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs. Nano Res. 2021, 14, 2681–2688.

    Article  CAS  Google Scholar 

  4. Wang, T. W.; Zhang, Q.; Lian, K.; Qi, G. C.; Liu, Q.; Feng, L. G.; Hu, G. Z.; Luo, J.; Liu, X. J. Fe nanoparticles confined by multiple-heteroatom-doped carbon frameworks for aqueous Zn-air battery driving CO2 electrolysis. J. Colloid Interface Sci. 2024, 655, 176–186.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, F. X.; Liu, X. P.; Chen, Y.; Tian, M.; Yang, T. F.; Zhang, J.; Gao, S. Y. Ordered mesoporous carbon fiber bundles with high-density and accessible Fe-NX active sites as efficient ORR catalysts for Zn-air batteries. Chin. Chem. Lett. 2023, 34, 108142.

    Article  CAS  Google Scholar 

  6. Lei, T.; Zhang, X.; Jung, J.; Cai, Y. X.; Hou, X. F.; Zhang, Q.; Qiao, J. L. Continuous electroreduction of carbon dioxide to formate on Tin nanoelectrode using alkaline membrane cell configuration in aqueous medium. Catal. Today 2018, 318, 32–38.

    Article  CAS  Google Scholar 

  7. Qiao, J. Y.; Bao, Z. H.; Kong, L. Q.; Liu, X. Y.; Lu, C. J.; Ni, M.; He, W.; Zhou, M.; Sun, Z. M. MOF-derived heterostructure CoNi/CoNiP anchored on MXene framework as a superior bifunctional electrocatalyst for zinc-air batteries. Chin. Chem. Lett. 2023, 34, 108318.

    Article  CAS  Google Scholar 

  8. Pan, Y.; Li, M.; Mi, W. L.; Wang, M. M.; Li, J. X.; Zhao, Y. L.; Ma, X. L.; Wang, B.; Zhu, W.; Cui, Z. M. et al. Single-atomic Mn sites coupled with Fe3C nanoparticles encapsulated in carbon matrixes derived from bimetallic Mn/Fe polyphthalocyanine conjugated polymer networks for accelerating electrocatalytic oxygen reduction. Nano Res. 2022, 15, 7976–7985.

    Article  CAS  Google Scholar 

  9. Zheng, W. Z.; Wang, D. S.; Cui, W. J.; Sang, X. H.; Qin, X. T.; Zhao, Z. L.; Li, Z. J.; Yang, B.; Zhong, M.; Lei, L. C. et al. Accelerating industrial-level CO2 electroreduction kinetics on isolated zinc centers via sulfur-boosted bicarbonate dissociation. Energy Environ. Sci. 2023, 16, 1007–1015.

    Article  CAS  Google Scholar 

  10. Zheng, W. Z.; Yang, X. X.; Li, Z. J.; Yang, B.; Zhang, Q. H.; Lei, L. C.; Hou, Y. Designs of tandem catalysts and cascade catalytic systems for CO2 upgrading. Angew. Chem., Int. Ed. 2023, 62, e202307283.

    Article  CAS  Google Scholar 

  11. Wang, M. M.; Li, M.; Liu, Y. Q.; Zhang, C.; Pan, Y. Structural regulation of single-atomic site catalysts for enhanced electrocatalytic CO2 reduction. Nano Res. 2022, 15, 4925–4941.

    Article  CAS  Google Scholar 

  12. Hu, X. Z.; Liu, Y. N.; Cui, W. J.; Yang, X. X.; Li, J. T.; Zheng, S. X.; Yang, B.; Li, Z. J.; Sang, X. H.; Li, Y. Y. et al. Boosting industrial-level CO2 electroreduction of N-doped carbon nanofibers with confined tin-nitrogen active sites via accelerating proton transport kinetics. Adv. Funct. Mater. 2023, 33, 2208781.

    Article  CAS  Google Scholar 

  13. Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

    Article  CAS  Google Scholar 

  14. Liang, L. H.; Jin, H. H.; Zhou, H.; Liu, B. S.; Hu, C. X.; Chen, D.; Wang, Z.; Hu, Z. Y.; Zhao, Y. F.; Li, H. W. et al. Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media. Nano Energy 2021, 88, 106221.

    Article  CAS  Google Scholar 

  15. Chen, Y.; Wan, Q.; Cao, L. R.; Gao, Z.; Lin, J.; Li, L.; Pan, X. L.; Lin, S.; Wang, X. D.; Zhang, T. Facet-dependent electronic state of Pt single atoms anchoring on CeO2 nanocrystal for CO (preferential) oxidation. J. Catal. 2022, 415, 174–185.

    Article  CAS  Google Scholar 

  16. Wang, T. W.; Gao, S. S.; Wei, T. R.; Qin, Y. J.; Zhang, S. S.; Ding, J. Y.; Liu, Q.; Luo, J.; Liu, X. J. Co nanoparticles confined in mesoporous Mo/N co-doped polyhedral carbon frameworks towards high-efficiency oxygen reduction. Chem.—Eur. J. 2023, 29, e202204034.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, H.; Jiang, L. Z.; Khan, J.; Wang, X. X.; Xiao, J. M.; Zhang, H. D.; Xie, H. J.; Li, L. N.; Wang, S. Y.; Han, L. Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem. 2023, 135, e202214988.

    Article  Google Scholar 

  18. Xie, J. X.; Zhong, L. J.; Yang, X.; He, D. Q.; Lin, K. L.; Chen, X. X.; Wang, H.; Gan, S. Y.; Niu, L. Phosphorous and selenium tuning Co-based non-precious catalysts for electrosynthesis of H2O2 in acidic media. Chin. Chem. Lett. 2024, 35, 108472.

    Article  CAS  Google Scholar 

  19. Xu, D.; Hong, X. L.; Liu, G. L. Highly dispersed metal doping to ZnZr oxide catalyst for CO2 hydrogenation to methanol: Insight into hydrogen spillover. J. Catal. 2021, 393, 207–214.

    Article  CAS  Google Scholar 

  20. Chougule, S. S.; Jeffery, A. A.; Chowdhury, S. R.; Min, J.; Kim, Y.; Ko, K.; Sravani, B.; Jung, N. Antipoisoning catalysts for the selective oxygen reduction reaction at the interface between metal nanoparticles and the electrolyte. Carbon Energy 2023, 5, e293.

    Article  CAS  Google Scholar 

  21. Chen, J. Y.; Wang, D. S.; Yang, X. X.; Cui, W. J.; Sang, X. H.; Zhao, Z. L.; Wang, L. G.; Li, Z. J.; Yang, B.; Lei, L. C. et al. Accelerated transfer and spillover of carbon monoxide through tandem catalysis for kinetics-boosted ethylene electrosynthesis. Angew. Chem., Int. Ed. 2023, 62, e202215406.

    Article  CAS  Google Scholar 

  22. Zhao, Y. L.; Chen, H. C.; Ma, X. L.; Li, J. Y.; Yuan, Q.; Zhang, P.; Wang, M. M.; Li, J. X.; Li, M.; Wang, S. F. et al. Vacancy defects inductive effect of asymmetrically coordinated single-atom Fe-N3S1 active sites for robust electrocatalytic oxygen reduction with high turnover frequency and mass activity. Adv. Mater. 2024, 36, 2308243.

    Article  CAS  Google Scholar 

  23. Pedersen, P. D.; Melander, M. M.; Bligaard, T.; Vegge, T.; Honkala, K.; Hansen, H. A. Grand canonical DFT investigation of the CO2RR and HER reaction mechanisms on MoTe2 edges. J. Phys. Chem. C 2023, 127, 18855–18864.

    Article  CAS  Google Scholar 

  24. Zhang, W.; Guo, X. M.; Li, C.; Xue, J. Y.; Xu, W. Y.; Niu, Z.; Gu, H. W.; Redshaw, C.; Lang, J. P. Ultralong nitrogen/sulfur co-doped carbon nano-hollow-sphere chains with encapsulated cobalt nanoparticles for highly efficient oxygen electrocatalysis. Carbon Energy 2023, 5, e317.

    Article  CAS  Google Scholar 

  25. MacArthur, K. E.; Polani, S.; Klingenhof, M.; Gumbiowski, N.; Möller, T.; Paciok, P.; Kang, J. Q.; Epple, M.; Basak, S.; Eichel, R. A. et al. Post-synthesis heat treatment of doped PtNi-alloy fuel-cell catalyst nanoparticles studied by in-situ electron microscopy. ACS Appl. Energy Mater. 2023, 6, 5959–5967.

    Article  CAS  Google Scholar 

  26. Xia, Z. M.; Xiao, H. Grand canonical ensemble modeling of electrochemical interfaces made simple. J. Chem. Theory Comput. 2023, 19, 5168–5175.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, X. H.; Liu, Y. Y. Unveiling the active structure of single nickel atom catalysis: Critical roles of charge capacity and hydrogen bonding. J. Am. Chem. Soc. 2020, 142, 5773–5777.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, D. Y.; Zhang, Y.; Liu, H.; Rao, P.; Xu, L.; Chen, D.; Tian, X. L.; Yang, J. Acetic acid-assisted mild dealloying of fine CuPd nanoalloys achieving compressive strain toward high-efficiency oxygen reduction and ethanol oxidation electrocatalysis. Carbon Energy 2023, 5, e324.

    Article  CAS  Google Scholar 

  29. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  30. Han, A. L.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.

    Article  CAS  Google Scholar 

  31. Jiang, F.; Li, Y. C.; Pan, Y. Design principles of single-atom catalysts for oxygen evolution reaction: From targeted structures to active sites. Adv. Mater. 2024, 36, 2306309.

    Article  CAS  Google Scholar 

  32. Chen, J. Y.; Wang, T. T.; Wang, X. Y.; Yang, B.; Sang, X. H.; Zheng, S. X.; Yao, S. Y.; Li, Z. J.; Zhang, Q. H.; Lei, L. C. et al. Promoting electrochemical CO2 reduction via boosting activation of adsorbed intermediates on iron single-atom catalyst. Adv. Funct. Mater. 2022, 32, 2110174.

    Article  CAS  Google Scholar 

  33. Shen, H.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, J.; Liu, X. J. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production. J. Colloid Interface Sci. 2023, 634, 730–736.

    Article  CAS  PubMed  Google Scholar 

  34. Wu, W. B.; Zhu, J. Y.; Tong, Y.; Xiang, S. F.; Chen, P. Z. Electronic structural engineering of bimetallic Bi-Cu alloying nanosheet for highly-efficient CO2 electroreduction and Zn-CO2 batteries. Nano Res. 2024, 17, 3684–3692.

    Article  CAS  Google Scholar 

  35. Zhu, J. X.; Lv, L.; Zaman, S.; Chen, X. B.; Dai, Y. H.; Chen, S. H.; He, G. J.; Wang, D. S.; Mai, L. Q. Advances and challenges in singlesite catalysts towards electrochemical CO2 methanation. Energy Environ. Sci. 2023, 16, 4812–4833.

    Article  CAS  Google Scholar 

  36. Wang, T. T.; Huang, J. C.; Sang, W.; Zhou, C.; Zhang, B. H.; Zhu, W.; Du, K.; Kou, Z. K.; Wang, S. X. Correlative Mn-Co catalyst excels Pt in oxygen reduction reaction of quasi-solid-state zinc-air batteries. Nano Res. 2024, 17, 4118–4124.

    Article  CAS  Google Scholar 

  37. Zhang, P.; Chen, K.; Li, J. Y.; Wang, M. M.; Li, M.; Liu, Y. Q.; Pan, Y. Bifunctional single atom catalysts for rechargeable zinc-air batteries: From dynamic mechanism to rational design. Adv. Mater. 2023, 35, 2303243.

    Article  CAS  Google Scholar 

  38. Wang, H. L.; Li, J.; Huang, M. R.; Cui, J. Z.; Cheng, Z. Y.; Yu, R.; Zhu, H. W. Single-atom alloys prepared by two-step thermal evaporation. Nano Res. 2024, 17, 2808–2813.

    Article  CAS  Google Scholar 

  39. Gao, Y.; Cai, Z. W.; Wu, X. C.; Lv, Z. L.; Wu, P.; Cai, C. X. Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations. ACS Catal. 2018, 8, 10364–10374.

    Article  CAS  Google Scholar 

  40. Liu, A. M.; Guan, W. X.; Wu, K. F.; Ren, X. F.; Gao, L. G.; Ma, T. L. Density functional theory study of nitrogen-doped graphene as a high-performance electrocatalyst for CO2RR. Appl. Surf. Sci. 2021, 540, 148319.

    Article  CAS  Google Scholar 

  41. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  42. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  43. Li, J. N.; Yan, S. H.; Li, G.; Wang, Y.; Xu, H. Y.; Duan, G. B. Synthesis of core–shell ZIF-8@In2O3 nanorods and enhancement of selectivity to NO2. China Powder Sci. Technol. 2023, 29, 101–109.

    CAS  Google Scholar 

  44. Cao, H.; Zhang, Z. S.; Chen, J. W.; Wang, Y. G. Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catal. 2022, 12, 6606–6617.

    Article  CAS  Google Scholar 

  45. Guo, S.; Liu, Y. W.; Wang, Y. L.; Dong, K.; Zhang, X. P.; Zhang, S. J. Interfacial role of ionic liquids in CO2 electrocatalytic reduction: A mechanistic investigation. Chem. Eng. J. 2023, 457, 141076.

    Article  CAS  Google Scholar 

  46. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  47. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  48. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  49. Ehrlich, S.; Moellmann, J.; Reckien, W.; Bredow, T.; Grimme, S. System-dependent dispersion coefficients for the DFT-D3 treatment of adsorption processes on ionic surfaces. ChemPhysChem 2011, 12, 3414–3420.

    Article  CAS  PubMed  Google Scholar 

  50. Ullman, A. M.; Brodsky, C. N.; Li, N.; Zheng, S. L.; Nocera, D. G. Probing edge site reactivity of oxidic cobalt water oxidation catalysts. J. Am. Chem. Soc. 2016, 138, 4229–4236.

    Article  CAS  PubMed  Google Scholar 

  51. Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

    Article  CAS  Google Scholar 

  52. Wang, L. G.; Wu, J. B.; Wang, S. W.; Liu, H.; Wang, Y.; Wang, D. S. The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Res. 2024, 17, 3261–3301.

    Article  CAS  Google Scholar 

  53. Cai, Y. M.; Lin, C. B.; Cha, X. W.; Wu, Y. L.; Rao, X. P.; Tan, K. B.; Cai, D. R.; Zhuang, G. L.; Zhan, G. W. Antiover-reduction of Ni/In2O3 nanocatalysts by atomic layer deposition of Al2O3 films for durable CO2 hydrogenation to methanol. ACS Catal. 2024, 14, 8463–8479.

    Article  CAS  Google Scholar 

  54. Chen, X.; Sun, Z. G.; Cai, B.; Li, X. M.; Zhang, S. H.; Fu, D.; Zou, Y. S.; Fan, Z. Y.; Zeng, H. B. Substantial improvement of operating stability by strengthening metal–halogen bonds in halide perovskites. Adv. Funct. Mater. 2022, 32, 2112129.

    Article  CAS  Google Scholar 

  55. Park, J. H.; Saito, N.; Kawasumi, M. Novel solution plasma synthesis of highly durable carbon shell encapsulated platinum-based cathode catalyst for polymer electrolyte membrane fuel cells. Carbon 2023, 214, 118364.

    Article  CAS  Google Scholar 

  56. Liu, J. C.; Luo, F.; Li, J. Electrochemical potential-driven shift of frontier orbitals in M-N-C single-atom catalysts leading to inverted adsorption energies. J. Am. Chem. Soc. 2023, 145, 25264–25273.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Y.; Li, J. L.; Shi, W. X.; Zhang, Z. M.; Guo, S.; Si, R.; Liu, M.; Zhou, H. C.; Yao, S.; An, C. H. et al. Unveiling single atom nucleation for isolating ultrafine fcc Ru nanoclusters with outstanding dehydrogenation activity. Adv. Energy Mater. 2020, 10, 2002138.

    Article  CAS  Google Scholar 

  58. Wu, H. E.; Fei, G. T.; Gao, X. D.; Guo, X.; Gong, X. X.; Ma, X. L.; Wang, Q.; Xu, S. H. Research progress on preparation and application of polyaniline and its composite materials. China Powder Sci. Technol. 2023, 29, 70–80.

    Google Scholar 

  59. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  60. Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.

    Article  Google Scholar 

  61. Manceau, A.; Marcus, M. A.; Grangeon, S. Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am. Mineral. 2012, 97, 816–827.

    Article  CAS  Google Scholar 

  62. Han, H.; Im, J.; Lee, M.; Choo, D. N-bridged Ni and Mn single-atom pair sites: A highly efficient electrocatalyst for CO2 conversion to CO. Appl. Catal. B: Environ. 2023, 320, 121953.

    Article  CAS  Google Scholar 

  63. Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Cuenya, B. R.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kang, J.; Wang, H.; Ji, S.; Key, J.; Wang, R. F. Synergy among manganese, nitrogen and carbon to improve the catalytic activity for oxygen reduction reaction. J. Power Sources 2014, 251, 363–369.

    Article  CAS  Google Scholar 

  65. Guo, Z.; Xie, Y. B.; Xiao, J. D.; Zhao, Z. J.; Wang, Y. X.; Xu, Z. M.; Zhang, Y.; Yin, L. C.; Cao, H. B.; Gong, J. L. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J. Am. Chem. Soc. 2019, 141, 12005–12010.

    Article  CAS  PubMed  Google Scholar 

  66. Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

    Article  CAS  Google Scholar 

  67. Zhang, C.; Liu, W.; Song, M.; Zhang, J. J.; He, F.; Wang, J.; Xiong, M.; Zhang, J.; Wang, D. L. Pyranoid-O-dominated graphene-like nanocarbon for two-electron oxygen reduction reaction. Appl. Catal. B: Environ 2022, 307, 121173.

    Article  CAS  Google Scholar 

  68. Xu, S. C.; Kim, Y.; Higgins, D.; Yusuf, M.; Jaramillo, T. F.; Prinz, F. B. Building upon the Koutecky–Levich equation for evaluation of next-generation oxygen reduction reaction catalysts. Electrochim. Acta 2017, 255, 99–108.

    Article  CAS  Google Scholar 

  69. Sahin, N. E.; Napporn, T. W.; Dubau, L.; Kadirgan, F.; Léger, J. M.; Kokoh, K. B. Temperature-dependence of oxygen reduction activity on Pt/C and PtCr/C electrocatalysts synthesized from microwave-heated diethylene glycol method. Appl. Catal. B: Environ. 2017, 203, 72–84.

    Article  CAS  Google Scholar 

  70. Wu, W. J.; Han, Z.; Zhang, F. Y.; Liu, P. F.; Li, J. Preparation of high-purity nano iron oxide. China Powder Sci. Technol. 2024, 30, 56–65.

    CAS  Google Scholar 

  71. Ma, Y. F.; Chen, M.; Geng, H. B.; Dong, H. F.; Wu, P.; Li, X. M.; Guan, G. Q.; Wang, T. J. Synergistically tuning electronic structure of porous β-Mo2C spheres by Co doping and Mo-vacancies defect engineering for optimizing hydrogen evolution reaction activity. Adv. Funct. Mater. 2020, 30, 2000561.

    Article  CAS  Google Scholar 

  72. Liu, W. J.; Liu, W. X.; Hou, T.; Ding, J. Y.; Wang, Z. G.; Yin, R. L.; San, X. Y.; Feng, L. G.; Luo, J.; Liu, X. J. Coupling Co-Ni phosphides for energy-saving alkaline seawater splitting. Nano Res. 2024, 17, 4797–4806.

    Article  CAS  Google Scholar 

  73. Ji, Y. Q.; Yu, Z. H.; Yan, L. G.; Song, W. Research progress in preparation, modification and application of biomass-based singleatom catalysts. China Powder Sci. Technol. 2023, 29, 100–107.

    Google Scholar 

  74. Chen, S. S.; Qi, G. C.; Yin, R. L.; Liu, Q.; Feng, L. G.; Feng, X. C.; Hu, G. Z.; Luo, J.; Liu, X. J.; Liu, W. X. Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarrays using Zn-nitrate batteries. Nanoscale 2023, 15, 19577–19585.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52073214 and 22075211) and Guangxi Natural Science Fund for Distinguished Young Scholars (No. 2024GXNSFFA010008). This work was supported by the open research fund of the Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry at Kashi University. This research was supported by the TianHe Qingsuo open research fund of Tianjin Science and Technology Association for Youth Scientists (TSYS) in 2022 and National Supercomputing Center in Tianjin (NSCC-TJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaili Wang, Xijun Liu or Jia He.

Electronic Supplementary Material

12274_2024_6799_MOESM1_ESM.pdf

Revealing the role of electrode potential micro-environments in single Mn atoms for carbon dioxide and oxygen electrolysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Liu, Y., Wang, K. et al. Revealing the role of electrode potential micro-environments in single Mn atoms for carbon dioxide and oxygen electrolysis. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6799-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6799-7

Keywords

Navigation