Skip to main content

Advertisement

Log in

The Effect of GLP-1 Receptor Agonists on Postprandial Lipaemia

  • Nonstatin Drugs (M. Vrablik, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review the currently available data on the effect of Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) on postprandial lipaemia.

Recent Findings

Out of the available studies that examined the respective lipid parameter, exenatide reduced postprandial triacyglycerol (TAG) in 4/6, apolipoprotein B-48 in 3/3, non-esterified fatty acids in 2/2, and apolipoprotein C-III and very low-density lipoprotein cholesterol (VLDL-C) in 1/1 studies. Liraglutide reduced postprandial TAG in 2/2, apolipoprotein B-48 in 3/3 and apolipoprotein C-III, chylomicron-TAG and VLDL1-TAG in 1/1 studies. Lixisenatide reduced postprandial chylomicron-TAG and apolipoprotein B-48 in 1 study. Semaglutide reduced postprandial TAG, apolipoprotein B-48 and VLDL in 1 study. Dulaglutide reduced postprandial apolipoprotein B-48 in 1 study.

Summary

GLP-1 RAs have consistent beneficial effects on postprandial lipaemia with most of the data coming from studies with exenatide and liraglutide. Reduction of postprandial lipaemia might be one of the mechanisms behind the pleiotropic effects of GLP-1 RAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

    Article  CAS  Google Scholar 

  2. Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011;14(5):575–85. https://doi.org/10.1016/j.cmet.2011.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Emerging Risk Factors C, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22. https://doi.org/10.1016/S0140-6736(10)60484-9.

    Article  CAS  Google Scholar 

  4. Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829–41. https://doi.org/10.1056/NEJMoa1008862.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ. 1998;316(7134):823–8. https://doi.org/10.1136/bmj.316.7134.823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacobs MJ, Kleisli T, Pio JR, Malik S, L’Italien GJ, Chen RS, et al. Prevalence and control of dyslipidemia among persons with diabetes in the United States. Diabetes Res Clin Pract. 2005;70(3):263–9. https://doi.org/10.1016/j.diabres.2005.03.032.

    Article  PubMed  Google Scholar 

  7. Yan L, Xu MT, Yuan L, Chen B, Xu ZR, Guo QH, et al. Prevalence of dyslipidemia and its control in type 2 diabetes: a multicenter study in endocrinology clinics of China. J Clin Lipidol. 2016;10(1):150–60. https://doi.org/10.1016/j.jacl.2015.10.009.

    Article  PubMed  Google Scholar 

  8. Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015;58(5):886–99. https://doi.org/10.1007/s00125-015-3525-8. (An up-to-date and comprehensive review on diabetic dyslipidaemia.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eberly LE, Stamler J, Neaton JD, Multiple Risk Factor Intervention Trial Research G. Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary heart disease. Arch Intern Med. 2003;163(9):1077–83. https://doi.org/10.1001/archinte.163.9.1077.

    Article  Google Scholar 

  10. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298(3):299–308. https://doi.org/10.1001/jama.298.3.299.

    Article  CAS  PubMed  Google Scholar 

  11. Freiberg JJ, Tybjaerg-Hansen A, Jensen JS, Nordestgaard BG. Nonfasting triglycerides and risk of ischemic stroke in the general population. JAMA. 2008;300(18):2142–52. https://doi.org/10.1001/jama.2008.621.

    Article  CAS  PubMed  Google Scholar 

  12. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(12):728–42. https://doi.org/10.1038/nrendo.2012.140.

    Article  CAS  PubMed  Google Scholar 

  13. • Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827. (CV outcome trial for liraglutide reporting its CV benefit.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. • Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44. https://doi.org/10.1056/NEJMoa1607141. (CV outcome trial for semaglutide reporting its CV benefit.)

    Article  CAS  Google Scholar 

  15. • Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394(10193):121–30. https://doi.org/10.1016/S0140-6736(19)31149-3. (CV outcome trial for dulaglutide reporting its CV benefit.)

    Article  CAS  Google Scholar 

  16. Hernandez AF, Green JB, Janmohamed S, D’Agostino RB Sr, Granger CB, Jones NP, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392(10157):1519–29. https://doi.org/10.1016/S0140-6736(18)32261-X.

    Article  CAS  Google Scholar 

  17. Gerstein HC, Sattar N, Rosenstock J, Ramasundarahettige C, Pratley R, Lopes RD, et al. Cardiovascular and Renal Outcomes with Efpeglenatide in Type 2 Diabetes. N Engl J Med. 2021. https://doi.org/10.1056/NEJMoa2108269.

    Article  PubMed  Google Scholar 

  18. Qin X, Shen H, Liu M, Yang Q, Zheng S, Sabo M, et al. GLP-1 reduces intestinal lymph flow, triglyceride absorption, and apolipoprotein production in rats. Am J Physiol Gastrointest Liver Physiol. 2005;288(5):G943–9. https://doi.org/10.1152/ajpgi.00303.2004.

    Article  CAS  PubMed  Google Scholar 

  19. Hsieh J, Longuet C, Baker CL, Qin B, Federico LM, Drucker DJ, et al. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia. 2010;53(3):552–61. https://doi.org/10.1007/s00125-009-1611-5.

    Article  CAS  PubMed  Google Scholar 

  20. • Verges B, Duvillard L, Pais de Barros JP, Bouillet B, Baillot-Rudoni S, Rouland A, et al. Liraglutide reduces postprandial hyperlipidemia by increasing ApoB48 (Apolipoprotein B48) catabolism and by reducing ApoB48 production in patients with type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2018;38(9):2198–206. https://doi.org/10.1161/ATVBAHA.118.310990 ((Contains animal and human data. Examines the effect of liraglutide on postpradial lipaemia and provides some mechanistic insights.)).

    Article  CAS  PubMed  Google Scholar 

  21. Meier JJ, Gethmann A, Gotze O, Gallwitz B, Holst JJ, Schmidt WE, et al. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia. 2006;49(3):452–8. https://doi.org/10.1007/s00125-005-0126-y.

    Article  CAS  PubMed  Google Scholar 

  22. Schwartz EA, Koska J, Mullin MP, Syoufi I, Schwenke DC, Reaven PD. Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus. Atherosclerosis. 2010;212(1):217–22. https://doi.org/10.1016/j.atherosclerosis.2010.05.028.

    Article  CAS  PubMed  Google Scholar 

  23. Schwartz SL, Ratner RE, Kim DD, Qu Y, Fechner LL, Lenox SM, et al. Effect of exenatide on 24-hour blood glucose profile compared with placebo in patients with type 2 diabetes: a randomized, double-blind, two-arm, parallel-group, placebo-controlled, 2-week study. Clin Ther. 2008;30(5):858–67. https://doi.org/10.1016/j.clinthera.2008.05.004.

    Article  CAS  PubMed  Google Scholar 

  24. DeFronzo RA, Okerson T, Viswanathan P, Guan X, Holcombe JH, MacConell L. Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr Med Res Opin. 2008;24(10):2943–52. https://doi.org/10.1185/03007990802418851.

    Article  CAS  PubMed  Google Scholar 

  25. Fineman MS, Bicsak TA, Shen LZ, Taylor K, Gaines E, Varns A, et al. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care. 2003;26(8):2370–7. https://doi.org/10.2337/diacare.26.8.2370.

    Article  CAS  PubMed  Google Scholar 

  26. Bunck MC, Corner A, Eliasson B, Heine RJ, Shaginian RM, Wu Y, et al. One-year treatment with exenatide vs. insulin glargine: effects on postprandial glycemia, lipid profiles, and oxidative stress. Atherosclerosis. 2010;212(1):223–9. https://doi.org/10.1016/j.atherosclerosis.2010.04.024.

    Article  CAS  PubMed  Google Scholar 

  27. Xiao C, Bandsma RH, Dash S, Szeto L, Lewis GF. Exenatide, a glucagon-like peptide-1 receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans. Arterioscler Thromb Vasc Biol. 2012;32(6):1513–9. https://doi.org/10.1161/ATVBAHA.112.246207.

    Article  CAS  PubMed  Google Scholar 

  28. Hermansen K, Baekdal TA, During M, Pietraszek A, Mortensen LS, Jorgensen H, et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab. 2013;15(11):1040–8. https://doi.org/10.1111/dom.12133.

    Article  CAS  PubMed  Google Scholar 

  29. Matikainen N, Soderlund S, Bjornson E, Pietilainen K, Hakkarainen A, Lundbom N, et al. Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: a single-centre randomized controlled study. Diabetes Obes Metab. 2019;21(1):84–94. https://doi.org/10.1111/dom.13487.

    Article  CAS  PubMed  Google Scholar 

  30. • Whyte MB, Shojaee-Moradie F, Sharaf SE, Jackson NC, Fielding B, Hovorka R, et al. Lixisenatide reduces chylomicron triacylglycerol by increased clearance. J Clin Endocrinol Metab. 2019;104(2):359–68. https://doi.org/10.1210/jc.2018-01176. (The only work available thus far examining the effect of lixisenatide on postpradial lipaemia.)

    Article  PubMed  Google Scholar 

  31. • Hjerpsted JB, Flint A, Brooks A, Axelsen MB, Kvist T, Blundell J. Semaglutide improves postprandial glucose and lipid metabolism, and delays first-hour gastric emptying in subjects with obesity. Diabetes Obes Metab. 2018;20(3):610–9. https://doi.org/10.1111/dom.13120. (The only work available thus far examining the effect of semaglutide on postpradial lipaemia.)

    Article  CAS  PubMed  Google Scholar 

  32. Kuwata H, Yabe D, Murotani K, Fujiwara Y, Haraguchi T, Kubota S, et al. Effects of glucagon-like peptide-1 receptor agonists on secretions of insulin and glucagon and gastric emptying in Japanese individuals with type 2 diabetes: a prospective, observational study. J Diabetes Investig. 2021. https://doi.org/10.1111/jdi.13598.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hyson D, Rutledge JC, Berglund L. Postprandial lipemia and cardiovascular disease. Curr Atheroscler Rep. 2003;5(6):437–44. https://doi.org/10.1007/s11883-003-0033-y.

    Article  PubMed  Google Scholar 

  34. Shojaee-Moradie F, Ma Y, Lou S, Hovorka R, Umpleby AM. Prandial hypertriglyceridemia in metabolic syndrome is due to an overproduction of both chylomicron and VLDL triacylglycerol. Diabetes. 2013;62(12):4063–9. https://doi.org/10.2337/db13-0935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Adiels M, Matikainen N, Westerbacka J, Soderlund S, Larsson T, Olofsson SO, et al. Postprandial accumulation of chylomicrons and chylomicron remnants is determined by the clearance capacity. Atherosclerosis. 2012;222(1):222–8. https://doi.org/10.1016/j.atherosclerosis.2012.02.001.

    Article  CAS  PubMed  Google Scholar 

  36. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39. https://doi.org/10.1056/NEJMoa1612917.

    Article  CAS  PubMed  Google Scholar 

  37. Tolessa T, Gutniak M, Holst JJ, Efendic S, Hellstrom PM. Glucagon-like peptide-1 retards gastric emptying and small bowel transit in the rat: effect mediated through central or enteric nervous mechanisms. Dig Dis Sci. 1998;43(10):2284–90. https://doi.org/10.1023/a:1026678925120.

    Article  CAS  PubMed  Google Scholar 

  38. Meier JJ, Gallwitz B, Salmen S, Goetze O, Holst JJ, Schmidt WE, et al. Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab. 2003;88(6):2719–25. https://doi.org/10.1210/jc.2003-030049.

    Article  CAS  PubMed  Google Scholar 

  39. Wojdemann M, Wettergren A, Sternby B, Holst JJ, Larsen S, Rehfeld JF, et al. Inhibition of human gastric lipase secretion by glucagon-like peptide-1. Dig Dis Sci. 1998;43(4):799–805. https://doi.org/10.1023/a:1018874300026.

    Article  CAS  PubMed  Google Scholar 

  40. Hellstrom PM. GLP-1: broadening the incretin concept to involve gut motility. Regul Pept. 2009;156(1–3):9–12. https://doi.org/10.1016/j.regpep.2009.04.004.

    Article  CAS  PubMed  Google Scholar 

  41. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab. 2021;46: 101102. https://doi.org/10.1016/j.molmet.2020.101102.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is supported by Ministry of Health, Czech Republic—conceptual development of research organization (Institute for Clinical and Experimental Medicine – IKEM, IN 00023001) and RVO VFN64165 (General University Hospital in Prague, Czech Republic).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Haluzík.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

P.N. has served on speaker panels for Novo Nordisk, Eli Lilly, Sanofi, Mundipharma; on advisory panels for Sanofi; received honoraria or consulting fees from Merck and Eli Lilly; and received travel grants from Sanofi and Eli Lilly.

M.H. has served on advisory panel for Eli Lilly, Novo Nordisk, Sanofi, AstraZeneca, Mundipharma; and has served as a consultant for Eli Lilly, Novo Nordisk, Sanofi, AstraZeneca, Mundipharma; and has received research support for AstraZeneca, Eli Lilly, Bristol-Meyers Squibb; and has received honoraria or consulting fees from Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Johnson & Johnson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The article is part of the Topical Collection on Nonstatin Drugs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novodvorský, P., Haluzík, M. The Effect of GLP-1 Receptor Agonists on Postprandial Lipaemia. Curr Atheroscler Rep 24, 13–21 (2022). https://doi.org/10.1007/s11883-022-00982-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-022-00982-3

Keywords

Navigation