[Skip to Navigation]
Sign In
1.
Cochran  WG.  The planning of observational studies of human populations.   J R Stat Soc [Ser A]. 1965;128(2):234-266. doi:10.2307/2344179 Google ScholarCrossref
2.
Susser  M.  Causal Thinking in the Health Sciences: Concepts and Strategies of Epidemiology. Oxford University Press; 1973:xii.
3.
Rubin  DB.  Estimating causal effects of treatments in randomized and nonrandomized studies.   J Educ Psychol. 1974;66(5):688-701. doi:10.1037/h0037350 Google ScholarCrossref
4.
Rubin  DB.  Bayesian inference for causal effects: the role of randomization.   Ann Stat. 1978;6:34-58. doi:10.1214/aos/1176344064 Google ScholarCrossref
5.
Rubin  DB.  Randomization analysis of experimental data: the Fisher randomization test comment.   J Am Stat Assoc. 1980;75(371):591-593. doi:10.2307/2287653 Google ScholarCrossref
6.
Rothman  KJ, Greenland  S, Walker  AM.  Concepts of interaction.   Am J Epidemiol. 1980;112(4):467-470. doi:10.1093/oxfordjournals.aje.a113015 PubMedGoogle ScholarCrossref
7.
Cochran  WG.  Planning and Analysis of Observational Studies. John Wiley & Sons; 1983. doi:10.1002/9780470316542
8.
Miettinen  OS.  Theoretical Epidemiology: Principles of Occurrence Research in Medicine. Delmar Publishers; 1985:xxii.
9.
Robins  J.  A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect.   Math Model. 1986;7(9-12):1393-1512. doi:10.1016/0270-0255(86)90088-6 Google ScholarCrossref
10.
Greenland  S, Robins  JM.  Identifiability, exchangeability, and epidemiological confounding.   Int J Epidemiol. 1986;15(3):413-419. doi:10.1093/ije/15.3.413 PubMedGoogle ScholarCrossref
11.
Holland  PW.  Statistics and causal inference.   J Am Stat Assoc. 1986;81(396):945-960. doi:10.1080/01621459.1986.10478354 Google ScholarCrossref
12.
Robins  JM, Morgenstern  H.  The foundations of confounding in epidemiology.   Comput Math Appl. 1987;14(9-12):869-916. doi:10.1016/0898-1221(87)90236-7 Google ScholarCrossref
13.
Greenland  S.  Randomization, statistics, and causal inference.   Epidemiology. 1990;1(6):421-429. doi:10.1097/00001648-199011000-00003 PubMedGoogle ScholarCrossref
14.
Robins  JM, Greenland  S.  Identifiability and exchangeability for direct and indirect effects.   Epidemiology. 1992;3(2):143-155. doi:10.1097/00001648-199203000-00013 PubMedGoogle ScholarCrossref
15.
Cox  DR.  Causality: some statistical aspects.   J R Stat Soc Ser A Stat Soc. 1992;155(2):291-301. doi:10.2307/2982962 Google ScholarCrossref
16.
Halloran  ME, Struchiner  CJ.  Causal inference in infectious diseases.   Epidemiology. 1995;6(2):142-151. doi:10.1097/00001648-199503000-00010 PubMedGoogle ScholarCrossref
17.
Little  RJ, Rubin  DB.  Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches.   Annu Rev Public Health. 2000;21(1):121-145. doi:10.1146/annurev.publhealth.21.1.121 PubMedGoogle ScholarCrossref
18.
Shadish  WR, Cook  TD, Campbell  DT.  Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Houghton Mifflin; 2001:xxi.
19.
Rosenbaum  P.  Observational Studies. Springer-Verlag; 2002. doi:10.1007/978-1-4757-3692-2
20.
Frangakis  CE, Rubin  DB.  Principal stratification in causal inference.   Biometrics. 2002;58(1):21-29. doi:10.1111/j.0006-341X.2002.00021.x PubMedGoogle ScholarCrossref
21.
Hernán  MA.  A definition of causal effect for epidemiological research.   J Epidemiol Community Health. 2004;58(4):265-271. doi:10.1136/jech.2002.006361 PubMedGoogle ScholarCrossref
22.
Rothman  KJ, Greenland  S.  Causation and causal inference in epidemiology.   Am J Public Health. 2005;95(suppl 1):S144-S150. doi:10.2105/AJPH.2004.059204 PubMedGoogle ScholarCrossref
23.
Hernán  MA, Robins  JM.  Estimating causal effects from epidemiological data.   J Epidemiol Community Health. 2006;60(7):578-586. doi:10.1136/jech.2004.029496 PubMedGoogle ScholarCrossref
24.
Heckman  JJ.  Econometric causality.   Int Stat Rev. 2008;76(1):1-27. doi:10.1111/j.1751-5823.2007.00024.x Google ScholarCrossref
25.
Hudgens  MG, Halloran  ME.  Toward causal inference with interference.   J Am Stat Assoc. 2008;103(482):832-842. doi:10.1198/016214508000000292 PubMedGoogle ScholarCrossref
26.
Pearl  J.  Causal inference in statistics: an overview.   Statist Serv. 2009;3:96-146.Google Scholar
27.
Pearl  J.  Causality. Cambridge University Press; 2009. doi:10.1017/CBO9780511803161
28.
Angrist  JD, Pischke  JS.  Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton University Press; 2009. doi:10.1515/9781400829828
29.
VanderWeele  TJ.  On the distinction between interaction and effect modification.   Epidemiology. 2009;20(6):863-871. doi:10.1097/EDE.0b013e3181ba333c PubMedGoogle ScholarCrossref
30.
Angrist  JD, Pischke  JS.  The credibility revolution in empirical economics: how better research design is taking the con out of econometrics.   J Econ Perspect. 2010;24(2):3-30. doi:10.1257/jep.24.2.3 Google ScholarCrossref
31.
Rosenbaum  PR.  Design of Observational Studies. Springer; 2010. doi:10.1007/978-1-4419-1213-8
32.
Van der Laan  MJ, Rose  S.  Targeted Learning: Causal Inference for Observational and Experimental Data. Springer; 2011. doi:10.1007/978-1-4419-9782-1
33.
Berzuini  C, Dawid  P, Bernardinell  L, eds.  Causality: Statistical Perspectives and Applications. John Wiley & Sons; 2012. doi:10.1002/9781119945710
34.
Imbens  GW, Rubin  DB.  Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press; 2015. doi:10.1017/CBO9781139025751
35.
Athey  S, Imbens  GW.  The state of applied econometrics: causality and policy evaluation.   J Econ Perspect. 2017;31(2):3-32. doi:10.1257/jep.31.2.3 Google ScholarCrossref
36.
Young  JG, Stensrud  MJ, Tchetgen Tchetgen  EJ, Hernán  MA.  A causal framework for classical statistical estimands in failure-time settings with competing events.   Stat Med. 2020;39(8):1199-1236. doi:10.1002/sim.8471 PubMedGoogle ScholarCrossref
37.
Hernán  MA, Robins  JM.  Causal inference: what if.  Accessed April 24, 2024. https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
38.
Imbens  GW.  Causal inference in the social sciences.  Accessed April 24, 2024. doi:10.1146/annurev-statistics-033121-114601
39.
Greenland  S, Pearl  J, Robins  JM.  Confounding and collapsibility in causal inference.   Stat Sci. 1999;14(1):29-46. doi:10.1214/ss/1009211805Google ScholarCrossref
40.
Greenland  S, Brumback  B.  An overview of relations among causal modelling methods.   Int J Epidemiol. 2002;31(5):1030-1037. doi:10.1093/ije/31.5.1030PubMedGoogle ScholarCrossref
41.
Laan  MJ, Robins  JM.  Unified Methods for Censored Longitudinal Data and Causality. Springer; 2003. doi:10.1007/978-0-387-21700-0
42.
Cochran  WG, Rubin  DB.  Controlling bias in observational studies: a review.   Sankhya Ser A. 1973;35(4):417-446.Google Scholar
43.
Rosenbaum  PR, Rubin  DB.  The central role of the propensity score in observational studies for causal effects.   Biometrika. 1983;70(1):41-55. doi:10.1093/biomet/70.1.41 Google ScholarCrossref
44.
Rosenbaum  PR, Rubin  DB.  Reducing bias in observational studies using subclassification on the propensity score.   J Am Stat Assoc. 1984;79(387):516-524. doi:10.1080/01621459.1984.10478078 Google ScholarCrossref
45.
Manski  CF.  Nonparametric bounds on treatment effects.   Am Econ Rev. 1990;80(2):319-323.Google Scholar
46.
Angrist  J, Imbens  G.  Identification and Estimation of Local Average Treatment Effects. National Bureau of Economic Research Cambridge; 1995. doi:10.3386/t0118
47.
Angrist  JD, Imbens  GW, Rubin  DB.  Identification of causal effects using instrumental variables.   J Am Stat Assoc. 1996;91(434):444-455. doi:10.1080/01621459.1996.10476902 Google ScholarCrossref
48.
Hahn  J.  On the role of the propensity score in efficient semiparametric estimation of average treatment effects.   Econometrica. 1998;66(2):315-331. doi:10.2307/2998560 Google ScholarCrossref
49.
Robins  JM.  Association, causation, and marginal structural models.   Synthese. 1999;121(1-2):151-179. doi:10.1023/A:1005285815569 Google ScholarCrossref
50.
Hahn  J, Todd  P, Van der Klaauw  W.  Identification and estimation of treatment effects with a regression-discontinuity design.   Econometrica. 2001;69(1):201-209. doi:10.1111/1468-0262.00183 Google ScholarCrossref
51.
Hirano  K, Imbens  GW, Ridder  G.  Efficient estimation of average treatment effects using the estimated propensity score.   Econometrica. 2003;71(4):1161-1189. doi:10.1111/1468-0262.00442 Google ScholarCrossref
52.
Imbens  GW.  Nonparametric estimation of average treatment effects under exogeneity: a review.   Rev Econ Stat. 2004;86(1):4-29. doi:10.1162/003465304323023651 Google ScholarCrossref
53.
Lunceford  JK, Davidian  M.  Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study.   Stat Med. 2004;23(19):2937-2960. doi:10.1002/sim.1903 PubMedGoogle ScholarCrossref
54.
Bang  H, Robins  JM.  Doubly robust estimation in missing data and causal inference models.   Biometrics. 2005;61(4):962-973. doi:10.1111/j.1541-0420.2005.00377.x PubMedGoogle ScholarCrossref
55.
Rubin  DB.  Matched Sampling for Causal Effects. Cambridge University Press; 2006. doi:10.1017/CBO9780511810725
56.
Hernán  MA, Robins  JM.  Instruments for causal inference: an epidemiologist’s dream?   Epidemiology. 2006;17(4):360-372. doi:10.1097/01.ede.0000222409.00878.37 PubMedGoogle ScholarCrossref
57.
Robins  JM, Hernán  MA, Brumback  B.  Marginal structural models and causal inference in epidemiology.   Epidemiology. 2000;11(5):550-560. doi:10.1097/00001648-200009000-00011 PubMedGoogle ScholarCrossref
58.
Murphy  SA.  Optimal dynamic treatment regimes.   J R Stat Soc Series B Stat Methodol. 2003;65(2):331-355. doi:10.1111/1467-9868.00389 Google ScholarCrossref
59.
Gelman  A, Meng  XL, eds.  Applied Bayesian Modeling and Causal Inference From Incomplete-Data Perspectives. John Wiley & Sons; 2004. doi:10.1002/0470090456
60.
Athey  S, Imbens  GW.  Identification and inference in nonlinear difference-in-differences models.   Econometrica. 2006;74(2):431-497. doi:10.1111/j.1468-0262.2006.00668.x Google ScholarCrossref
61.
Ho  DE, Imai  K, King  G, Stuart  EA.  Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference.   Polit Anal. 2007;15(3):199-236. doi:10.1093/pan/mpl013 Google ScholarCrossref
62.
Imai  K, King  G, Stuart  EA.  Misunderstandings between experimentalists and observationalists about causal inference.   J R Stat Soc Ser A Stat Soc. 2008;171(2):481-502. doi:10.1111/j.1467-985X.2007.00527.x Google ScholarCrossref
63.
Robins  JM, Hernán  MA.  Estimation of the Causal Effects of Time-Varying Exposures: Longitudinal Data Analysis. Chapman & Hall/CRC; 2008:547-593. doi:10.1201/9781420011579.ch23
64.
Imbens  GW, Lemieux  T.  Regression discontinuity designs: a guide to practice.   J Econom. 2008;142(2):615-635. doi:10.1016/j.jeconom.2007.05.001 Google ScholarCrossref
65.
Sekhon  JS.  Opiates for the matches: matching methods for causal inference.   Annu Rev Polit Sci. 2009;12:487-508. doi:10.1146/annurev.polisci.11.060606.135444 Google ScholarCrossref
66.
Stuart  EA.  Matching methods for causal inference: a review and a look forward.   Stat Sci. 2010;25(1):1-21. doi:10.1214/09-STS313PubMedGoogle ScholarCrossref
67.
Lee  DS, Lemieux  T.  Regression discontinuity designs in economics.   J Econ Lit. 2010;48(2):281-355. doi:10.1257/jel.48.2.281 Google ScholarCrossref
68.
Orellana  L, Rotnitzky  A, Robins  JM.  Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: main content.   Int J Biostat. 2010;6(2):8. doi:10.2202/1557-4679.1200 PubMedGoogle ScholarCrossref
69.
Orellana  L, Rotnitzky  A, Robins  JM.  Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part II: proofs of results.   Int J Biostat. 2010;6(2):9. doi:10.2202/1557-4679.1242 PubMedGoogle ScholarCrossref
70.
Abadie  A, Diamond  A, Hainmueller  J.  Synthetic control methods for comparative case studies: estimating the effect of California’s tobacco control program.   J Am Stat Assoc. 2010;105(490):493-505. doi:10.1198/jasa.2009.ap08746 Google ScholarCrossref
71.
Lechner  M.  The estimation of causal effects by difference-in-difference methods.   Found Trends Econom. 2011;4(3):165-224. doi:10.1561/0800000014Google ScholarCrossref
72.
Hill  JL.  Bayesian nonparametric modeling for causal inference.   J Comput Graph Stat. 2011;20(1):217-240. doi:10.1198/jcgs.2010.08162 Google ScholarCrossref
73.
Tchetgen Tchetgen  EJ, VanderWeele  TJ.  On causal inference in the presence of interference.   Stat Methods Med Res. 2012;21(1):55-75. doi:10.1177/0962280210386779 PubMedGoogle ScholarCrossref
74.
Valeri  L, Vanderweele  TJ.  Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros.   Psychol Methods. 2013;18(2):137-150. doi:10.1037/a0031034 PubMedGoogle ScholarCrossref
75.
Chakraborty  B, Moodie  EEM.  Statistical Methods for Dynamic Treatment Regimes: Reinforcement Learning, Causal Inference, and Personalized Medicine. Springer; 2013. doi:10.1007/978-1-4614-7428-9
76.
VanderWeele  TJ, Knol  MJ.  A tutorial on interaction.   Epidemiol Methods. 2014;3(1):33-72. doi:10.1515/em-2013-0005 Google ScholarCrossref
77.
VanderWeele  T.  Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford University Press; 2015.
78.
Athey  S, Imbens  GW.  Machine learning methods for estimating heterogeneous causal effects.  Published April 2015. Accessed April 23, 2024. https://gsb-faculty.stanford.edu/guido-w-imbens/files/2022/04/3350.pdf
79.
Abadie  A, Imbens  GW.  Matching on the estimated propensity score.   Econometrica. 2016;84(2):781-807. doi:10.3982/ECTA11293 Google ScholarCrossref
80.
Sofer  T, Richardson  DB, Colicino  E, Schwartz  J, Tchetgen Tchetgen  EJ.  On negative outcome control of unobserved confounding as a generalization of difference-in-differences.   Stat Sci. 2016;31(3):348-361. doi:10.1214/16-STS558PubMedGoogle ScholarCrossref
81.
Cain  LE, Robins  JM, Lanoy  E, Logan  R, Costagliola  D, Hernán  MA.  When to start treatment? a systematic approach to the comparison of dynamic regimes using observational data.   Int J Biostat. 2010;6(2):18. doi:10.2202/1557-4679.1212PubMedGoogle ScholarCrossref
82.
Abadie  A, Cattaneo  MD.  Econometric methods for program evaluation.   Annu Rev Econ. 2018;10:465-503. doi:10.1146/annurev-economics-080217-053402 Google ScholarCrossref
83.
Chernozhukov  V, Chetverikov  D, Demirer  M,  et al.  Double/debiased machine learning for treatment and structural parameters.   Econom J. 2018;21(1):C1-C68. doi:10.1111/ectj.12097 Google ScholarCrossref
84.
Miao  W, Geng  Z, Tchetgen Tchetgen  E.  Identifying causal effects with proxy variables of an unmeasured confounder.   Biometrika. 2018;105(4):987-993. doi:10.1093/biomet/asy038 PubMedGoogle ScholarCrossref
85.
Wager  S, Athey  S.  Estimation and inference of heterogeneous treatment effects using random forests.   J Am Stat Assoc. 2018;113(523):1228-1242. doi:10.1080/01621459.2017.1319839 Google ScholarCrossref
86.
Li  F, Morgan  KL, Zaslavsky  AM.  Balancing covariates via propensity score weighting.   J Am Stat Assoc. 2018;113(521):390-400. doi:10.1080/01621459.2016.1260466 PubMedGoogle ScholarCrossref
87.
Künzel  SR, Sekhon  JS, Bickel  PJ, Yu  B.  Metalearners for estimating heterogeneous treatment effects using machine learning.   Proc Natl Acad Sci U S A. 2019;116(10):4156-4165. doi:10.1073/pnas.1804597116 PubMedGoogle ScholarCrossref
88.
Cattaneo  MD, Idrobo  N, Titiunik  R.  A Practical Introduction to Regression Discontinuity Designs: Foundations. Cambridge University Press; 2019. doi:10.1017/9781108684606
89.
Tsiatis  AA.  Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. CRC Press; 2019. doi:10.1201/9780429192692
90.
Fröhlich  M, Frölich  M, Sperlich  S.  Impact Evaluation. Cambridge University Press; 2019. doi:10.1017/9781107337008
91.
Abadie  A.  Using synthetic controls: feasibility, data requirements, and methodological aspects.   J Econ Lit. 2021;59(2):391-425. doi:10.1257/jel.20191450 Google ScholarCrossref
92.
Brumback  BA.  Fundamentals of Causal Inference: With R. Chapman & Hall/CRC; 2021. doi:10.1201/9781003146674
93.
Forastiere  L, Airoldi  EM, Mealli  F.  Identification and estimation of treatment and interference effects in observational studies on networks.   J Am Stat Assoc. 2021;116(534):901-918. doi:10.1080/01621459.2020.1768100 Google ScholarCrossref
94.
Cattaneo  MD, Titiunik  R.  Regression discontinuity designs.   Annu Rev Econ. 2022;14:821-851. doi:10.1146/annurev-economics-051520-021409 Google ScholarCrossref
95.
Roth  J, Sant’Anna  PH, Bilinski  A, Poe  J.  What’s trending in difference-in-differences? a synthesis of the recent econometrics literature.   J Econom. 2023;235(2):2218-2244. doi:10.1016/j.jeconom.2023.03.008 Google ScholarCrossref
96.
Huber  M.  Causal Analysis: Impact Evaluation and Causal Machine Learning With Applications in R. MIT Press; 2023.
97.
Cattaneo  MD, Idrobo  N, Titiunik  R.  A Practical Introduction to Regression Discontinuity Designs: Extensions. Cambridge University Press; 2024. doi:10.1017/9781009441896
98.
Ogburn  EL, Sofrygin  O, Diaz  I, Van der Laan  MJ.  Causal inference for social network data.   J Am Stat Assoc. 2024;119(545):597-611. doi:10.1080/01621459.2022.2131557 Google ScholarCrossref
99.
Rosenbaum  PR.  Model-based direct adjustment.   J Am Stat Assoc. 1987;82(398):387-394. doi:10.1080/01621459.1987.10478441Google ScholarCrossref
100.
Drake  C.  Effects of misspecification of the propensity score on estimators of treatment effect.   Biometrics. 1993;49:1231-1236. doi:10.2307/2532266Google ScholarCrossref
101.
Imbens  G, Angrist  J.  Identification and estimation of local average treatment effects.   Econometrica. 1994;61(2):467-476. doi:10.2307/2951620Google ScholarCrossref
102.
Heckman  JJ, Ichimura  H, Todd  PE.  Matching as an econometric evaluation estimator: evidence from evaluating a job training programme.   Rev Econ Stud. 1997;64(4):605-654. doi:10.2307/2971733Google ScholarCrossref
103.
Heckman  JJ, Vytlacil  EJ.  Local instrumental variables and latent variable models for identifying and bounding treatment effects.   Proc Natl Acad Sci U S A. 1999;96(8):4730-4734. doi:10.1073/pnas.96.8.4730PubMedGoogle ScholarCrossref
104.
Greenland  S.  An introduction to instrumental variables for epidemiologists.   Int J Epidemiol. 2000;29(4):722-729. doi:10.1093/ije/29.4.722PubMedGoogle ScholarCrossref
105.
Rosenbaum  PR.  Covariance adjustment in randomized experiments and observational studies.   Stat Sci. 2002;17(3):286-327. doi:10.1214/ss/1042727942Google ScholarCrossref
106.
Maldonado  G, Greenland  S.  Estimating causal effects.   Int J Epidemiol. 2002;31(2):422-429. doi:10.1093/ije/31.2.422PubMedGoogle ScholarCrossref
107.
Bertrand  M, Duflo  E, Mullainathan  S.  How much should we trust differences-in-differences estimates?   Q J Econ. 2004;119(1):249-275. doi:10.1162/003355304772839588Google ScholarCrossref
108.
Lee  MJ.  Micro-Econometrics for Policy, Program and Treatment Effects. OUP Oxford; 2005. doi:10.1093/0199267693.001.0001
109.
Abadie  A.  Semiparametric difference-in-differences estimators.   Rev Econ Stud. 2005;72(1):1-19. doi:10.1111/0034-6527.00321Google ScholarCrossref
110.
Abadie  A, Imbens  GW.  Large sample properties of matching estimators for average treatment effects.   Econometrica. 2006;74(1):235-267. doi:10.1111/j.1468-0262.2006.00655.xGoogle ScholarCrossref
111.
Van Der Laan  MJ, Rubin  D.  Targeted maximum likelihood learning.   Int J Biostat. 2006;2:1. doi:10.2202/1557-4679.1043Google ScholarCrossref
112.
Petersen  ML, Sinisi  SE, van der Laan  MJ.  Estimation of direct causal effects.   Epidemiology. 2006;17(3):276-284. doi:10.1097/01.ede.0000208475.99429.2dPubMedGoogle ScholarCrossref
113.
Donald  SG, Lang  K.  Inference with difference-in-differences and other panel data.   Rev Econ Stat. 2007;89(2):221-233. doi:10.1162/rest.89.2.221Google ScholarCrossref
114.
Imbens  GW, Wooldridge  JM.  Recent developments in the econometrics of program evaluation.   J Econ Lit. 2009;47(1):5-86. doi:10.1257/jel.47.1.5Google ScholarCrossref
115.
VanderWeele  TJ.  Marginal structural models for the estimation of direct and indirect effects.   Epidemiology. 2009;20(1):18-26. doi:10.1097/EDE.0b013e31818f69cePubMedGoogle ScholarCrossref
116.
van der Laan  MJ, Gruber  S.  Collaborative double robust targeted maximum likelihood estimation.   Int J Biostat. 2010;6(1):17. doi:10.2202/1557-4679.1181PubMedGoogle ScholarCrossref
117.
Austin  PC.  An introduction to propensity score methods for reducing the effects of confounding in observational studies.   Multivariate Behav Res. 2011;46(3):399-424. doi:10.1080/00273171.2011.568786PubMedGoogle ScholarCrossref
118.
Hainmueller  J.  Entropy balancing for causal effects: a multivariate reweighting method to produce balanced samples in observational studies.   Polit Anal. 2012;20(1):25-46. doi:10.1093/pan/mpr025Google ScholarCrossref
119.
Tchetgen Tchetgen  EJ, Shpitser  I.  Semiparametric theory for causal mediation analysis: efficiency bounds, multiple robustness, and sensitivity analysis.   Ann Stat. 2012;40(3):1816-1845. doi:10.1214/12-AOS990PubMedGoogle ScholarCrossref
120.
Daniel  RM, Cousens  SN, De Stavola  BL, Kenward  MG, Sterne  JAC.  Methods for dealing with time-dependent confounding.   Stat Med. 2013;32(9):1584-1618. doi:10.1002/sim.5686PubMedGoogle ScholarCrossref
121.
Austin  PC.  The performance of different propensity score methods for estimating marginal hazard ratios.   Stat Med. 2013;32(16):2837-2849. doi:10.1002/sim.5705PubMedGoogle ScholarCrossref
122.
Belloni  A, Chernozhukov  V, Hansen  C.  High-dimensional methods and inference on structural and treatment effects.   J Econ Perspect. 2014;28(2):29-50. doi:10.1257/jep.28.2.29Google ScholarCrossref
123.
Baiocchi  M, Cheng  J, Small  DS.  Instrumental variable methods for causal inference.   Stat Med. 2014;33(13):2297-2340. doi:10.1002/sim.6128PubMedGoogle ScholarCrossref
124.
Farrell  MH.  Robust inference on average treatment effects with possibly more covariates than observations.   J Econom. 2015;189(1):1-23. doi:10.1016/j.jeconom.2015.06.017Google ScholarCrossref
125.
Zubizarreta  JR.  Stable weights that balance covariates for estimation with incomplete outcome data.   J Am Stat Assoc. 2015;110(511):910-922. doi:10.1080/01621459.2015.1023805Google ScholarCrossref
126.
VanderWeele  TJ.  Mediation analysis: a practitioner’s guide.   Annu Rev Public Health. 2016;37:17-32. doi:10.1146/annurev-publhealth-032315-021402PubMedGoogle ScholarCrossref
127.
Mattei  A, Mealli  F.  Regression discontinuity designs as local randomized experiments.   Obs Stud. 2016;2:156-173.Google Scholar
128.
Ding  P, VanderWeele  TJ.  Sensitivity analysis without assumptions.   Epidemiology. 2016;27(3):368-377. doi:10.1097/EDE.0000000000000457PubMedGoogle ScholarCrossref
129.
VanderWeele  TJ, Tchetgen Tchetgen  EJ.  Mediation analysis with time varying exposures and mediators.   J R Stat Soc Series B Stat Methodol. 2017;79(3):917-938. doi:10.1111/rssb.12194PubMedGoogle ScholarCrossref
130.
Belloni  A, Chernozhukov  V, Fernández-Val  I, Hansen  C.  Program evaluation and causal inference with high-dimensional data.   Econometrica. 2017;85(1):233-298. doi:10.3982/ECTA12723Google ScholarCrossref
131.
Ding  P, Li  F.  Causal inference: a missing data perspective.   Stat Sci. 2018;33(2):214-237. doi:10.1214/18-STS645Google ScholarCrossref
132.
Sant’Anna  PHC, Zhao  J.  Doubly robust difference-in-differences estimators.   J Econom. 2020;219(1):101-122. doi:10.1016/j.jeconom.2020.06.003Google ScholarCrossref
133.
Hahn  PR, Murray  JS, Carvalho  CM.  Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects (with discussion).   Bayesian Anal. 2020;15(3):965-1056. doi:10.1214/19-BA1195Google ScholarCrossref
134.
Arkhangelsky  D, Athey  S, Hirshberg  DA, Imbens  GW, Wager  S.  Synthetic difference-in-differences.   Am Econ Rev. 2021;111(12):4088-4118. doi:10.1257/aer.20190159Google ScholarCrossref
135.
Callaway  B, Sant’Anna  P.  Difference-in-differences with multiple time periods.   J Econom. 2021;225(2):200-230. doi:10.1016/j.jeconom.2020.12.001Google ScholarCrossref
136.
Ben-Michael  E, Feller  A, Rothstein  J.  The augmented synthetic control method.  Accessed April 24, 2024. https://www.nber.org/system/files/working_papers/w28885/w28885.pdf doi:10.3386/w28885
137.
Athey  S, Bayate  M, Doudchenko  N, Imbens  G, Khosravi  K.  Matrix completion methods for causal panel data models.   J Am Stat Assoc. 2021;116:1-15. doi:10.1080/01621459.2021.1891924Google ScholarCrossref
138.
Li  F, Ding  P, Mealli  F.  Bayesian causal inference: a critical review.   Philos Trans A Math Phys Eng Sci. 2023;381(2247):20220153.PubMedGoogle Scholar
139.
Christiansen  S, Iverson  C, Flanagin  A,  et al.  AMA Manual of Style: A Guide for Authors and Editors. 11th ed. Oxford University Press; 2020.
140.
Zaslavsky  AM.  Exploring potential causal inference through natural experiments.   JAMA Health Forum. 2021;2(6):e210289. doi:10.1001/jamahealthforum.2021.0289PubMedGoogle ScholarCrossref
141.
VanderWeele  TJ.  Can sophisticated study designs with regression analyses of observational data provide causal inferences?   JAMA Psychiatry. 2021;78(3):244-246. doi:10.1001/jamapsychiatry.2020.2588 PubMedGoogle ScholarCrossref
142.
Haukoos  JS, Lewis  RJ.  The propensity score.   JAMA. 2015;314(15):1637-1638. doi:10.1001/jama.2015.13480 PubMedGoogle ScholarCrossref
143.
Lipsky  AM, Greenland  S.  Causal directed acyclic graphs.   JAMA. 2022;327(11):1083-1084. doi:10.1001/jama.2022.1816 PubMedGoogle ScholarCrossref
144.
Hernán  MA, Wang  W, Leaf  DE.  Target trial emulation: a framework for causal inference from observational data.   JAMA. 2022;328(24):2446-2447. doi:10.1001/jama.2022.21383 PubMedGoogle ScholarCrossref
145.
Thomas  L, Li  F, Pencina  M.  Using propensity score methods to create target populations in observational clinical research.   JAMA. 2020;323(5):466-467. doi:10.1001/jama.2019.21558 PubMedGoogle ScholarCrossref
146.
Niknam  BA, Zubizarreta  JR.  Using cardinality matching to design balanced and representative samples for observational studies.   JAMA. 2022;327(2):173-174. doi:10.1001/jama.2021.20555 PubMedGoogle ScholarCrossref
147.
Thomas  LE, Li  F, Pencina  MJ.  Overlap weighting: a propensity score method that mimics attributes of a randomized clinical trial.   JAMA. 2020;323(23):2417-2418. doi:10.1001/jama.2020.7819 PubMedGoogle ScholarCrossref
148.
Maciejewski  ML, Basu  A.  Regression discontinuity design.   JAMA. 2020;324(4):381-382. doi:10.1001/jama.2020.3822 PubMedGoogle ScholarCrossref
149.
Maciejewski  ML, Dowd  BE, Norton  EC.  Instrumental variables and heterogeneous treatment effects.   JAMA. 2022;327(12):1177-1178. doi:10.1001/jama.2022.2505 PubMedGoogle ScholarCrossref
150.
Emdin  CA, Khera  AV, Kathiresan  S.  Mendelian randomization.   JAMA. 2017;318(19):1925-1926. doi:10.1001/jama.2017.17219 PubMedGoogle ScholarCrossref
151.
Dimick  JB, Ryan  AM.  Methods for evaluating changes in health care policy: the difference-in-differences approach.   JAMA. 2014;312(22):2401-2402. doi:10.1001/jama.2014.16153PubMedGoogle ScholarCrossref
152.
Rothman  K.  Modern Epidemiology. Little Brown & Co; 1986:77.
153.
Savitz  DARE.  Re: “Associations are not effects”.   Am J Epidemiol. 1991;134(4):442-444. doi:10.1093/oxfordjournals.aje.a116110 PubMedGoogle ScholarCrossref
154.
Hernán  MA.  The C-word: scientific euphemisms do not improve causal inference from observational data.   Am J Public Health. 2018;108(5):616-619. doi:10.2105/AJPH.2018.304337 PubMedGoogle ScholarCrossref
155.
Rosenbaum  PR.  Discussing hidden bias in observational studies.   Ann Intern Med. 1991;115(11):901-905. doi:10.7326/0003-4819-115-11-901 PubMedGoogle ScholarCrossref
156.
Petersen  ML, van der Laan  MJ.  Causal models and learning from data: integrating causal modeling and statistical estimation.   Epidemiology. 2014;25(3):418-426. doi:10.1097/EDE.0000000000000078 PubMedGoogle ScholarCrossref
157.
Glass  TA, Goodman  SN, Hernán  MA, Samet  JM.  Causal inference in public health.   Annu Rev Public Health. 2013;34:61-75. doi:10.1146/annurev-publhealth-031811-124606 PubMedGoogle ScholarCrossref
158.
Dang  LE, Gruber  S, Lee  H,  et al.  A causal roadmap for generating high-quality real-world evidence.   J Clin Transl Sci. 2023;7(1):e212. doi:10.1017/cts.2023.635PubMedGoogle ScholarCrossref
159.
Guyatt  G, Meade  MO, Agoritsas  T, Richardson  WS, Jaeschke  R. What is the question? In: Guyatt  G, Rennie  D, Meade  MO, Cook  DJ, eds.  Users’ Guides to the Medical Literature: A Manual for Evidence-Based Clinical Practice. 3rd ed. McGraw-Hill; 2008:17-28.
160.
Stoto  M, Oakes  M, Stuart  E, Savitz  L, Priest  EL, Zurovac  J.  Analytical methods for a learning health system, 1: framing the research question.   EGEMS (Wash DC). 2017;5(1):28. doi:10.5334/egems.250 PubMedGoogle ScholarCrossref
161.
US Department of Health and Human Services; Food and Drug Administration; Center for Drug Evaluation and Research (CDER); Center for Biologics Evaluation and Research (CBER).  E9(R1) statistical principles for clinical trials: addendum: estimands and sensitivity analysis in clinical trials: guidance for industry.  Accessed April 24, 2024. https://www.fda.gov/media/148473/download
162.
Little  RJ, Lewis  RJ.  Estimands, estimators, and estimates.   JAMA. 2021;326(10):967-968. doi:10.1001/jama.2021.2886 PubMedGoogle ScholarCrossref
163.
Dawid  AP.  Causal inference without counterfactuals.   J Am Stat Assoc. 2000;95(450):407-424. doi:10.1080/01621459.2000.10474210 Google ScholarCrossref
164.
Robins  JM, Greenland  S.  Causal inference without counterfactuals: comment.   J Am Stat Assoc. 2000;95(450):431-435. doi:10.1080/01621459.2000.10474214Google ScholarCrossref
165.
Pearl  J.  Causal diagrams for empirical research.   Biometrika. 1995;82(4):669-688. doi:10.1093/biomet/82.4.669 Google ScholarCrossref
166.
Greenland  S, Pearl  J, Robins  JM.  Causal diagrams for epidemiologic research.   Epidemiology. 1999;10(1):37-48. doi:10.1097/00001648-199901000-00008 PubMedGoogle ScholarCrossref
167.
Richardson  TS, Robins  JM.  Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality.  Center for Statistics and the Social Sciences working paper 128. April 2013. Accessed April 23, 2024. https://csss.uw.edu/research/working-papers/single-world-intervention-graphs-swigs-unification-counterfactual-and
168.
Spirtes  P, Glymour  CN, Scheines  R.  Causation, Prediction, and Search. MIT Press; 2000.
169.
Ogburn  EL, VanderWeele  TJ.  Causal diagrams for interference.   Stat Sci. 2014;29(4):559-578. doi:10.1214/14-STS501 Google ScholarCrossref
170.
Hernán  MA, Robins  JM.  Using big data to emulate a target trial when a randomized trial is not available.   Am J Epidemiol. 2016;183(8):758-764. doi:10.1093/aje/kwv254 PubMedGoogle ScholarCrossref
171.
Rubin  DB.  The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials.   Stat Med. 2007;26(1):20-36. doi:10.1002/sim.2739 PubMedGoogle ScholarCrossref
172.
Rubin  DB.  For objective causal inference, design trumps analysis.   Ann Appl Stat. 2008;2(3):808-840. doi:10.1214/08-AOAS187Google ScholarCrossref
173.
Hernán  MA, Sauer  BC, Hernández-Díaz  S, Platt  R, Shrier  I.  Specifying a target trial prevents immortal time bias and other self-inflicted injuries in observational analyses.   J Clin Epidemiol. 2016;79:70-75. doi:10.1016/j.jclinepi.2016.04.014 PubMedGoogle ScholarCrossref
174.
VanderWeele  TJ.  Principles of confounder selection.   Eur J Epidemiol. 2019;34(3):211-219. doi:10.1007/s10654-019-00494-6 PubMedGoogle ScholarCrossref
175.
Robins  JM.  Data, design, and background knowledge in etiologic inference.   Epidemiology. 2001;12(3):313-320. doi:10.1097/00001648-200105000-00011 PubMedGoogle ScholarCrossref
176.
Hernán  MA, Hernández-Díaz  S, Werler  MM, Mitchell  AA.  Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology.   Am J Epidemiol. 2002;155(2):176-184. doi:10.1093/aje/155.2.176 PubMedGoogle ScholarCrossref
177.
Manski  CF.  Partial Identification of Probability Distributions. Springer; 2003.
178.
Balke  A, Pearl  J.  Bounds on treatment effects from studies with imperfect compliance.   J Am Stat Assoc. 1997;92(439):1171-1176. doi:10.1080/01621459.1997.10474074 Google ScholarCrossref
179.
Manski  CF.  Patient Care Under Uncertainty. Princeton University Press; 2019.
180.
Imbens  GW.  Potential outcome and directed acyclic graph approaches to causality: relevance for empirical practice in economics.   J Econ Lit. 2020;58(4):1129-1179. doi:10.1257/jel.20191597 Google ScholarCrossref
181.
Angrist  JD, Krueger  AB. Empirical strategies in labor economics. In: Ashenfelter  OC, Card  D, eds.  Handbook of Labor Economics. Vol 3. Elsevier; 1999:1277-1366.
182.
Greenland  S, Senn  SJ, Rothman  KJ,  et al.  Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations.   Eur J Epidemiol. 2016;31(4):337-350. doi:10.1007/s10654-016-0149-3 PubMedGoogle ScholarCrossref
183.
Lawlor  DA, Tilling  K, Davey Smith  G.  Triangulation in aetiological epidemiology.   Int J Epidemiol. 2016;45(6):1866-1886.PubMedGoogle Scholar
184.
Lipsitch  M, Tchetgen Tchetgen  E, Cohen  T.  Negative controls: a tool for detecting confounding and bias in observational studies.   Epidemiology. 2010;21(3):383-388. doi:10.1097/EDE.0b013e3181d61eeb PubMedGoogle ScholarCrossref
185.
Greenland  S.  Basic methods for sensitivity analysis of biases.   Int J Epidemiol. 1996;25(6):1107-1116. doi:10.1093/ije/25.6.1107 PubMedGoogle ScholarCrossref
186.
Robins  JM, Rotnitzky  A, Scharfstein  DO. Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In: Halloran  ME, Berry  D, eds.  Statistical Models in Epidemiology, the Environment, and Clinical Trials. Springer; 2000:1-94. doi:10.1007/978-1-4612-1284-3_1
187.
Lash  TL, Fox  MP, MacLehose  RF, Maldonado  G, McCandless  LC, Greenland  S.  Good practices for quantitative bias analysis.   Int J Epidemiol. 2014;43(6):1969-1985. doi:10.1093/ije/dyu149 PubMedGoogle ScholarCrossref
188.
VanderWeele  TJ, Ding  P.  Sensitivity analysis in observational research: introducing the E-value.   Ann Intern Med. 2017;167(4):268-274. doi:10.7326/M16-2607 PubMedGoogle ScholarCrossref
189.
Lash  TL, Fox  MP, Fink  AK.  Applying Quantitative Bias Analysis to Epidemiologic Data. Springer; 2009. doi:10.1007/978-0-387-87959-8
190.
Vanderweele  TJ, Arah  OA.  Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders.   Epidemiology. 2011;22(1):42-52. doi:10.1097/EDE.0b013e3181f74493PubMedGoogle ScholarCrossref
191.
MacLehose  RF, Ahern  TP, Lash  TL, Poole  C, Greenland  S.  The importance of making assumptions in bias analysis.   Epidemiology. 2021;32(5):617-624. doi:10.1097/EDE.0000000000001381 PubMedGoogle ScholarCrossref
192.
Toh  S, Hernán  MA.  Causal inference from longitudinal studies with baseline randomization.   Int J Biostat. 2008;4(1):22. doi:10.2202/1557-4679.1117 PubMedGoogle ScholarCrossref
193.
Hernán  MA, Robins  JM.  Per-protocol analyses of pragmatic trials.   N Engl J Med. 2017;377(14):1391-1398. doi:10.1056/NEJMsm1605385 PubMedGoogle ScholarCrossref
194.
Rosenbaum  PR.  Transparency: Design of Observational Studies. Springer; 2020:175-177. doi:10.1007/978-3-030-46405-9_6
195.
Cox  DR.  Applied statistics: a review.   Ann Appl Stat. 2007;1(1):1-16. doi:10.1214/07-AOAS113Google ScholarCrossref
196.
Greenland  S.  Invited commentary: the need for cognitive science in methodology.   Am J Epidemiol. 2017;186(6):639-645. doi:10.1093/aje/kwx259 PubMedGoogle ScholarCrossref
Special Communication
May 9, 2024

Causal Inference About the Effects of Interventions From Observational Studies in Medical Journals

Author Affiliations
  • 1CAUSALab, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
  • 2Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
  • 3Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
  • 4Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
  • 5Statistical Editor, JAMA
  • 6Department of Medicine, University of California, San Francisco
  • 7Department of Epidemiology and Biostatistics, University of California, San Francisco
  • 8Editor in Chief, JAMA and JAMA Network
JAMA. 2024;331(21):1845-1853. doi:10.1001/jama.2024.7741
Abstract

Importance  Many medical journals, including JAMA, restrict the use of causal language to the reporting of randomized clinical trials. Although well-conducted randomized clinical trials remain the preferred approach for answering causal questions, methods for observational studies have advanced such that causal interpretations of the results of well-conducted observational studies may be possible when strong assumptions hold. Furthermore, observational studies may be the only practical source of information for answering some questions about the causal effects of medical or policy interventions, can support the study of interventions in populations and settings that reflect practice, and can help identify interventions for further experimental investigation. Identifying opportunities for the appropriate use of causal language when describing observational studies is important for communication in medical journals.

Observations  A structured approach to whether and how causal language may be used when describing observational studies would enhance the communication of research goals, support the assessment of assumptions and design and analytic choices, and allow for more clear and accurate interpretation of results. Building on the extensive literature on causal inference across diverse disciplines, we suggest a framework for observational studies that aim to provide evidence about the causal effects of interventions based on 6 core questions: what is the causal question; what quantity would, if known, answer the causal question; what is the study design; what causal assumptions are being made; how can the observed data be used to answer the causal question in principle and in practice; and is a causal interpretation of the analyses tenable?

Conclusions and Relevance  Adoption of the proposed framework to identify when causal interpretation is appropriate in observational studies promises to facilitate better communication between authors, reviewers, editors, and readers. Practical implementation will require cooperation between editors, authors, and reviewers to operationalize the framework and evaluate its effect on the reporting of empirical research.

Introduction

Many medical journals, including JAMA, restrict the use of causal language to describing studies in which the intervention is randomly assigned. Indeed, randomized clinical trials are widely viewed as the preferred way of answering questions about the causal effects of interventions. Yet it is not feasible to answer all such questions with trials due to limitations including cost, follow-up duration, or ethical considerations. When such limitations preclude the conduct of trials, carefully designed analyses of observational (nonexperimental) data offer an alternative source of evidence on the effects of interventions (eg, treatment strategies, policies, or changes in behavior). Furthermore, observational studies can serve as a data-driven approach for identifying interventions that merit further experimental investigation and for examining the effects of interventions in populations and settings that reflect practice.

The potential of observational studies to contribute evidence about the causal effects of interventions is actively being examined across medicine, epidemiology, biostatistics, economics, and other social sciences. In this Special Communication, we examine a framework that might be used by medical journals as they move away from the current approach prohibiting the use of any causal language for observational studies and toward a more comprehensive approach for causal inference that reflects a synthesis of extensive prior work spanning multiple, diverse disciplines. We undertake this examination now for 3 main reasons. First, decision-makers are increasingly seeking timely answers to complex research questions about the effects of interventions that are challenging or impossible to address with randomized trials. For example, questions about long-term or rare effects of treatment, heterogeneity of treatment effects, or the effects of health care policies can be difficult to answer by relying exclusively on trials. Second, there has been wide dissemination of frameworks for posing causal questions and elaborating the assumptions needed to answer them.1-41 These frameworks have supported the refinement of existing methods and the development of new methods that promise to deliver results that have a causal interpretation, provided strong assumptions are met.42-138 Third, observational data from multiple sources (eg, registries, health care claims, electronic health records) are increasingly available for research purposes. Analyses from different sources can facilitate the evaluation of robustness by using data with different measurement characteristics from populations that may have different underlying causal structures.

In what follows, we first lay out the challenges inherent in drawing causal inferences about the effects of interventions from observational studies. We then discuss limitations of the current approach to determining the appropriateness of causal language for observational studies. Finally, we propose an alternative framework for causal inference in medical and health policy research and examine its implications for authors, reviewers, editors, and readers of clinical journals.

The Challenge in Drawing Causal Inferences From Observational Studies

Increasing use of observational studies to address questions about the causal effects of interventions poses a challenge to journals that primarily serve clinical audiences. These observational studies depend more heavily on causal and statistical modeling assumptions compared with large, well-conducted randomized trials. Therefore, all other study aspects being equal, drawing causal inferences from observational studies is inherently more speculative. But, as noted earlier, all other study aspects are often not equal. Randomized trials cannot address all causal questions of importance in medicine and health policy and may have limited generalizability; thus, investigators may need to use observational studies as a source of evidence to address causal questions. The challenge, then, is to balance the importance of addressing the causal questions for which observational studies are needed with caution regarding the reliance on strong assumptions to support causal conclusions.

When researchers are confronted with this challenge, one response is to retreat from causal goals and pursue purely descriptive or predictive goals for observational studies. This approach often amounts to applying a randomization-centered criterion for determining whether causal language is allowed, resulting in exclusively associational language for any investigation using observational data. With this approach, a single study design element essentially dictates the language that can be used to describe goals, methods, and interpretations. For example, current Instructions for Authors in JAMA and the JAMA Network journals state that “[c]ausal language (including use of terms such as effect and efficacy) should be used only for randomized clinical trials. For all other study designs…, methods and results should be described in terms of association or correlation and should avoid cause-and-effect wording.” This recommendation is also included in the AMA Manual of Style.139 Nevertheless, rare ad hoc exceptions have been made by JAMA and JAMA Network journals in allowing causal interpretations for observational analyses in which necessary assumptions were articulated and deemed plausible.140,141 Furthermore, articles in the JAMA Guide to Statistics and Methods series have discussed various causal inference methods.142-151

Limitations of the Randomization-Centered Criterion for Determining the Appropriateness of Causal Language and Interpretation

The use of a binary, randomization-centered criterion for allowing the use of causal language or interpretation is not problematic when applied to large, well-conducted randomized trials with near-perfect adherence to the study protocol and limited missing outcomes, wherein a causal interpretation is warranted. However, for many other studies, the approach based on this criterion is inadequate and does not accommodate precise descriptions of goals, research questions, methods, assumptions, and interpretations, and can result in lack of clarity during interactions among authors, editors, reviewers, and readers. The prohibition impedes the presentation and critique of study methods and risks misinterpretation of results both by allowing inappropriately drawn implicit causal inferences and by obscuring appropriate causal conclusions.

Prohibiting causal language when describing observational studies does not allow authors to communicate their research goals clearly and fully.152-154 Causal goals require causal assumptions (eg, the assumption of no uncontrolled confounding). These assumptions are almost never possible to verify with the data alone, and their plausibility can best be assessed within an explicit causal framework. Without causal language, the description and critique of research methods becomes challenging because the connection between ends (causal goals) and means (research methods) is obscured.154 Furthermore, when causal goals, assumptions, and methods cannot be explicitly discussed, assessing the choice of study design and analytic approaches and interpreting results become difficult, if not impossible. In fact, avoidance of causal language precludes effective criticism grounded in causal considerations. For example, if a manuscript purports to present only descriptive or predictive associations between some exposure (or treatment) and outcomes, there is little room for discussing confounding in the sense of comparability between intervention groups.153,154 Yet such discussion is often necessary to uncover the reported study’s limitations if a causal interpretation is under consideration. In other words, restricting causal discourse is undesirable because authors and readers often hope that the estimated associations have a tenable causal interpretation and are interested to know when and why such interpretation may not be valid.

In addition, using a single study design element (randomization) as the sole criterion of whether causal conclusions can be drawn risks giving the impression of complacency about potential weaknesses that can affect both randomized trials and observational studies. Editors, reviewers, and readers would not draw causal conclusions based on simple between-treatment-group comparisons from a randomized trial with poor data collection practices, differential outcome ascertainment, or a high dropout rate, but these issues are not given the same weight as (lack of) randomization when the current approach to the use of causal language is applied. Arguably, an approach based on the randomization-centered criterion without directly confronting the difficulties listed earlier would be possible only if randomized trials with no major flaws were the only experimental studies under consideration, in which case cautions about causal interpretation could be reserved only for observational studies. Randomization strengthens the plausibility of a causal interpretation of study results, but randomization alone is not sufficient. Conversely, the absence of randomization does not on its own render a causal interpretation completely untenable. For observational studies, the blanket prohibition of causal language skirts the difficult but necessary work of judging whether a causal interpretation of any specific observational analysis is tenable. This judgment cannot rest on simply noting the absence of randomization155; it requires context-informed examination of all relevant aspects of design, conduct, and analysis.

An Alternative Framework for Causal Inference for Medical and Health Policy Research

The extensive literature on causal inference across diverse disciplines26,30,156-158 suggests an alternative framework for observational studies that aim to answer questions about the causal effects of interventions. This framework avoids the limitations discussed earlier and can help editors and readers determine whether a particular observational study provides valid and reliable evidence about the effects of interventions in a target population. Such a framework can be summarized in terms of several core questions that need to be considered to understand and interpret observational studies:

  1. What is the causal question? If the goal of the research is to provide evidence about the effects of medical or health policy interventions, the research question is best explicitly framed in causal terms, comparing 2 or more well-defined alternatives with respect to clearly defined outcomes of interest, for a specific target population during a period of follow-up.159,160

  2. What quantity would, if known, answer the causal question? After stating the causal question, one can specify the quantity that could, if known, serve as the answer to the question; this quantity is the causal estimand (eg, the causal effect of interest).161,162 The precise specification of the causal estimand requires describing the population of interest, the interventions or strategies to be compared, details of outcome definitions and the timing of outcome ascertainment, and the choice of effect measure (eg, risk difference, relative risk). The causal estimand can be formally specified using mathematical causal models (eg, closely related counterfactual, potential outcome, or structural models3,5,26,163-169). In many cases, specification can be aided by describing the (hypothetical) target trial that could address the research question.144,170-172

  3. What is the study design? The approach for collecting new data or using existing data—including choosing among data sources, sampling individuals and their follow-up experience, and collecting treatment covariate and outcome information over time—determines whether the data can be used to answer the causal question. For example, in cohort studies comparing different treatment strategies, the choice of the start of follow-up (time zero) and the alignment of that time with the time at which eligibility is determined can affect the validity of observational analyses.173 More broadly, the key goal of study design is to make the causal assumptions more plausible and to facilitate learning about the causal estimand.

  4. What causal assumptions are being made? Drawing causal inferences from observational studies requires causal assumptions that allow investigators to learn about the causal estimand by using data. For example, many observational studies require an assumption that, given the variables that have been measured and accounted for (via study design or analysis), there remains no uncontrolled confounding.174 Other approaches, such as instrumental variable analyses, difference-in-differences analyses, or regression discontinuity analyses, require different sets of assumptions. Typically, causal assumptions are untestable in the sense that they cannot be fully evaluated with the data alone; instead, they have to be examined on the basis of background knowledge (eg, clinical knowledge of the treatment selection process).175,176

  5. How can the observed data be used to answer the causal question in principle and in practice? Using the study design and causal assumptions, investigators can determine how analyses of observed data could, at least in principle (eg, if, hypothetically, all causal assumptions held and sampling variability were absent), provide information about the causal estimand. The formal examination of whether the observed data can in principle be used to learn about the causal estimand is referred to as identification analysis. In some cases, the assumptions suffice only to place bounds around the causal estimand.45,177-179 Most studies aiming to estimate causal estimands using observational data rely on well-understood identification strategies (ie, the results from prior identification analyses)180,181 and apply statistical methods to data for estimation and statistical inference. We offer a more detailed description of the relationship between causal estimands, identification analysis, and the use of data and statistical methods in the eText; eFigure 1, eFigure 2, and eFigure 3; and Example 1 and Example 2 in the Supplement.

    The statistical methods for observational studies should have good statistical performance (eg, acceptably low bias, high precision) and support the valid quantification of uncertainty (eg, producing valid CIs). The challenges of drawing statistical inferences using data and models are, if anything, accentuated in nonexperimental research.182 Furthermore, issues related to missing data and measurement error often arise in observational studies and require additional assumptions (typically untestable using the data alone) about the structure of missingness or measurement error, additional data (eg, validation studies), and specialized methods to address these issues and properly quantify uncertainty.

  6. Is a causal interpretation of the analyses tenable? Evaluating the appropriateness of endowing the results of an observational analysis with a causal interpretation typically requires untestable assumptions. Determining whether such interpretation is tenable, therefore, involves subjective judgments informed by background knowledge and an understanding of the research context, drawing on multiple sources of evidence. These judgments can be informed by triangulation of results across different analyses (eg, using different assumptions or other data sources)183; attempts to falsify the causal assumptions with the data, when possible (eg, negative control analyses80,184); and quantitative bias/sensitivity analyses and other methods to examine assumption violations.19,185-191

What This Framework Aims to Accomplish

This framework maintains the distinction between causation and association while addressing the limitations of approaches that rely on randomization as the sole criterion: it differentiates between causal ends and the statistical means to achieve them; supports the alignment between causal questions and the analyses used to answer them; increases transparency to facilitate scientific conversations; acknowledges that subjective judgments, informed by background clinical or policy knowledge, are unavoidable in observational studies; and aims to instill intellectual humility. Disagreements regarding the appropriate interpretation of observational studies among different stakeholders are always possible. This framework clarifies such disagreements by making the relevant considerations explicit and facilitates reasoning and debate.

Far from being a list of separate items, the framework highlights that multiple interrelated components are needed to report, evaluate, and interpret observational studies. For example, investigators will select study designs that are tailored to answer the causal question of interest and that support the plausibility of the causal assumptions needed to answer it. Similarly, study design and data analysis aspects can be arranged to facilitate the conduct of quantitative bias/sensitivity and falsification analyses, providing for the rigorous evaluation of assumptions. Background knowledge and understanding of the medical or policy context of the investigation is needed in all steps of the framework, from framing the research question to evaluating the plausibility of assumptions and evaluating whether a causal interpretation is tenable.

Interpreted practically, the framework allows the use of causal language to specify research questions and study goals (eg, in a manuscript’s Introduction section); to describe study methods, assumptions under which the methods produce results that have a causal interpretation, and approaches for examining assumptions (eg, in the Methods section); and to reason about the plausibility of assumptions and the degree to which a causal interpretation is tenable in view of background knowledge while acknowledging the potential limitations of such an interpretation (eg, in the Discussion section). Two elements are central to this proposal for presenting observational studies: first, being explicit about the “if-then” (conditional) structure needed for their interpretation (eg, if certain assumptions hold, then a causal interpretation of the findings is tenable); and second, acknowledging that careful context-informed judgments are necessary to evaluate whether assumptions are plausible and a causal interpretation is tenable.

Last, although not the focus of this communication, the framework can also be applied to randomized trials and may be particularly helpful for pragmatic trials with baseline randomization that otherwise share many characteristics of observational studies (eg, trials with nonstandardized follow-up protocols and limited systematic efforts to enhance adherence to the assigned treatment).192,193

What the Framework Does Not Do

The framework does not imply that all, or even most, observational studies merit a causal interpretation. For some observational studies that start with causal goals, causal inference may prove impossible; in these cases, estimates retain only associational interpretations. In addition, many important descriptive and predictive research questions can be answered by observational studies that do not require causal notions.

Furthermore, when addressing causal questions, our proposal does not single out any of the currently popular frameworks, empirical research strategies, or statistical methods for causal inference from observational studies (eg, structural approaches27,167; identification strategies180,181; the target trial framework144,170; the causal roadmap and targeted learning32,156; any specific statistical, epidemiologic, or econometric method), nor does it single out any philosophy of statistical inference (eg, frequentist, bayesian). There is room for creativity in approaching practical causal questions, and investigators should have the freedom to select the approaches that best suit their research questions, provided they follow the norms for reporting described earlier. Without delving into the details of a specific research question, perhaps the most that can be recommended is to use the simplest methods that are adequate for the study’s causal goals.194,195

The framework does not address the broader issue of how to determine whether some general causal claim is warranted (eg, whether some exposure is a “cause” of some outcome). Instead, it focuses on whether observational studies can contribute independent credible evidence about causal effects of interventions in a particular target population, time, and place. Reports of such studies are the core publication type in most medical and health policy journals; more important, they are a key input to the process of evidence synthesis that can support general causal claims. This process combines information from multiple sources, including—in addition to trials and observational studies comparing interventions—basic science investigations, case reports, noncomparative studies, meta-analyses, and simulation modeling studies, as well as background knowledge.

Last, the framework does not cover other important issues that apply broadly to empirical investigations regardless of study design, such as prespecifying and preregistering analyses, following the principles of reproducible science, and sharing research materials.

Implications for Authors, Reviewers, Editors, and Readers

Adoption and further elaboration of the framework outlined earlier by medical journals offer the promise of facilitating communication between authors, reviewers, editors, and readers, but come with challenges in operationalization and implementation.

For authors, the framework provides more freedom to express causal goals and assumptions of observational studies, but also entails the responsibility to explicitly discuss and evaluate assumptions and openly acknowledge limitations (eg, violations of assumptions) and may require additional work (eg, to report technical details; to conduct triangulation, falsification, and bias analyses).

For reviewers, the framework should aid in the assessment of manuscripts that report observational studies. It requires familiarity with causal inference methods, as well as background knowledge to judge the appropriateness of the methods in the context of applied work.

Adoption of the framework should facilitate communication between authors, reviewers, and editors by encouraging the transparent reporting and critique of methods and results of observational studies of medical interventions. Implementation at scale will require retaining expert reviewers and increasing the cooperation between editors, authors, and reviewers to operationalize the framework for use with different analyses and specific clinical applications and to evaluate whether it improves the reporting of empirical research. Furthermore, the complex judgments that the framework entails require vigilance to mitigate cognitive biases and distortions that may influence the presentation and interpretation of observational studies, particularly those using technically complex methods.196

For readers, the framework should facilitate the clear communication of causal questions and methods. As usual, detailed technical descriptions may be appropriately placed in supplemental appendices to allow for the inclusion of the necessary detail and to maintain the readability and accessibility of the published study. Although our proposal suggests that complex concepts and more elaborate methodological descriptions may be needed to fully report and evaluate observational studies, adoption of the framework promises to improve the value of applied research that can support medical and policy decisions.

We look forward to readers’ reactions to the framework. In future communications, we plan to explore its application in the context of concrete examples of specific types of observational analyses typically encountered in medical journals such as JAMA and the JAMA Network journals.

Back to top
Article Information

Accepted for Publication: April 15, 2024.

Published Online: May 9, 2024. doi:10.1001/jama.2024.7741

Corresponding Author: Issa J. Dahabreh, MD, ScD, CAUSALab, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Room 816c, Boston, MA 02115 ([email protected]).

Conflict of Interest Disclosures: Dr Dahabreh reported receiving grants from Sanofi as principal investigator of a research agreement between Harvard and Sanofi for causal inference methods for transportability analyses; and reported receiving consulting fees from Moderna for trial and observational analyses outside the submitted work. No other disclosures were reported.

Additional Contributions: We thank Caroline Sietmann, MALIS, JAMA and JAMA Network, for assistance with soliciting and organizing comments on earlier versions of this article. We thank the following individuals for comments on earlier versions: Heather Gwynn Allore, MS, PhD, Yale University and JAMA Internal Medicine; Joshua D. Angrist, PhD, Massachusetts Institute of Technology; Michael Berkwits, MD; Jesse Berlin, ScD, Rutgers University and JAMA Network Open; Isabelle Boutron, MD, PhD, Université de Paris, CRESS, Inserm; Stephen R. Cole, PhD, University of North Carolina at Chapel Hill; John Concato, MD, MS, MPH, US Food and Drug Administration and Yale School of Medicine; Gregory Curfman, MD, JAMA and JAMA Network; Annette Flanagin, RN, MA, JAMA and JAMA Network; Maria Glymour, ScD, MS, Boston University; Deborah Grady, MD, MPH, University of California, San Francisco, and JAMA Internal Medicine; Sander Greenland, DrPH, University of California, Los Angeles; Gordon Guyatt, MD, MSc, McMaster University; Sebastien Haneuse, PhD, Harvard University and JAMA Network Open; Frank E. Harrell Jr, PhD, Vanderbilt University; Robert A. Harrington, MD, Weill Cornell Medicine and JAMA Cardiology; Laura Hatfield, PhD, Harvard University and JAMA; Miguel A. Hernán, MD, PhD, Harvard University; Guido Imbens, PhD, Stanford University; Nina Joyce, PhD, Brown University; Amy H. Kaji, MD, PhD, University of California, Los Angeles, and JAMA Surgery; Jay S. Kaufman, PhD, McGill University; Dhruv Kazi, MD, MSc, MS, Beth Israel Deaconess Medical Center; Kenneth S. Kendler, MD, Virginia Commonwealth University; Daniel B. Kramer, MD, MPH, Beth Israel Deaconess Medical Center; Timothy Lash, DSc, MPH, Emory University; Roger J. Lewis, MD, PhD, University of California, Los Angeles, and JAMA; Charles F. Manski, PhD, Northwestern University; M. Hassan Murad, MD, Mayo Clinic; Christopher Muth, MD, JAMA; Sharon-Lise Normand, PhD, Harvard University; Neil Pearce, PhD, London School of Hygiene and Tropical Medicine; Maya Petersen, MD, PhD, University of California, Berkeley; Romain Pirracchio, MD, MPH, PhD, University of California, San Francisco, and JAMA; Stuart J. Pocock, PhD, London School of Hygiene and Tropical Medicine; James M. Robins, MD, Harvard University; Sherri Rose, PhD, Stanford University; Paul R. Rosenbaum, PhD, University of Pennsylvania; Kenneth J. Rothman, DrPH, Boston University; Jeffrey Saver, MD, University of California, Los Angeles, and JAMA; Stephen Schenkel, MD, MPP, University of Maryland Medical Center and JAMA; David Schriger, MD, MPH, University of California, Los Angeles, and JAMA; Ian Shrier, MD, PhD, McGill University; Dylan S. Small, PhD, University of Pennsylvania; George Davey Smith, DSc, University of Bristol; Zirui Song, MD, PhD, Harvard University and JAMA Health Forum; Jonathan A. C. Sterne, PhD, University of Bristol; Elizabeth A. Stuart, PhD, Johns Hopkins University and JAMA Health Forum; Sonja A. Swanson, ScD, University of Pittsburgh and JAMA Psychiatry; Eric Tchetgen Tchetgen, PhD, University of Pennsylvania; Linda Valeri, PhD, Columbia University and JAMA Psychiatry; Tyler J. VanderWeele, PhD, Harvard University and JAMA Psychiatry; Rishi Wadhera, MD, MPP, MPhil, Beth Israel Deaconess Medical Center; Robert Yeh, MD, MS, MBA, Beth Israel Deaconess Medical Center; and Alan M. Zaslavsky, PhD, Harvard Medical School.

References
1.
Cochran  WG.  The planning of observational studies of human populations.   J R Stat Soc [Ser A]. 1965;128(2):234-266. doi:10.2307/2344179 Google ScholarCrossref
2.
Susser  M.  Causal Thinking in the Health Sciences: Concepts and Strategies of Epidemiology. Oxford University Press; 1973:xii.
3.
Rubin  DB.  Estimating causal effects of treatments in randomized and nonrandomized studies.   J Educ Psychol. 1974;66(5):688-701. doi:10.1037/h0037350 Google ScholarCrossref
4.
Rubin  DB.  Bayesian inference for causal effects: the role of randomization.   Ann Stat. 1978;6:34-58. doi:10.1214/aos/1176344064 Google ScholarCrossref
5.
Rubin  DB.  Randomization analysis of experimental data: the Fisher randomization test comment.   J Am Stat Assoc. 1980;75(371):591-593. doi:10.2307/2287653 Google ScholarCrossref
6.
Rothman  KJ, Greenland  S, Walker  AM.  Concepts of interaction.   Am J Epidemiol. 1980;112(4):467-470. doi:10.1093/oxfordjournals.aje.a113015 PubMedGoogle ScholarCrossref
7.
Cochran  WG.  Planning and Analysis of Observational Studies. John Wiley & Sons; 1983. doi:10.1002/9780470316542
8.
Miettinen  OS.  Theoretical Epidemiology: Principles of Occurrence Research in Medicine. Delmar Publishers; 1985:xxii.
9.
Robins  J.  A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect.   Math Model. 1986;7(9-12):1393-1512. doi:10.1016/0270-0255(86)90088-6 Google ScholarCrossref
10.
Greenland  S, Robins  JM.  Identifiability, exchangeability, and epidemiological confounding.   Int J Epidemiol. 1986;15(3):413-419. doi:10.1093/ije/15.3.413 PubMedGoogle ScholarCrossref
11.
Holland  PW.  Statistics and causal inference.   J Am Stat Assoc. 1986;81(396):945-960. doi:10.1080/01621459.1986.10478354 Google ScholarCrossref
12.
Robins  JM, Morgenstern  H.  The foundations of confounding in epidemiology.   Comput Math Appl. 1987;14(9-12):869-916. doi:10.1016/0898-1221(87)90236-7 Google ScholarCrossref
13.
Greenland  S.  Randomization, statistics, and causal inference.   Epidemiology. 1990;1(6):421-429. doi:10.1097/00001648-199011000-00003 PubMedGoogle ScholarCrossref
14.
Robins  JM, Greenland  S.  Identifiability and exchangeability for direct and indirect effects.   Epidemiology. 1992;3(2):143-155. doi:10.1097/00001648-199203000-00013 PubMedGoogle ScholarCrossref
15.
Cox  DR.  Causality: some statistical aspects.   J R Stat Soc Ser A Stat Soc. 1992;155(2):291-301. doi:10.2307/2982962 Google ScholarCrossref
16.
Halloran  ME, Struchiner  CJ.  Causal inference in infectious diseases.   Epidemiology. 1995;6(2):142-151. doi:10.1097/00001648-199503000-00010 PubMedGoogle ScholarCrossref
17.
Little  RJ, Rubin  DB.  Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches.   Annu Rev Public Health. 2000;21(1):121-145. doi:10.1146/annurev.publhealth.21.1.121 PubMedGoogle ScholarCrossref
18.
Shadish  WR, Cook  TD, Campbell  DT.  Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Houghton Mifflin; 2001:xxi.
19.
Rosenbaum  P.  Observational Studies. Springer-Verlag; 2002. doi:10.1007/978-1-4757-3692-2
20.
Frangakis  CE, Rubin  DB.  Principal stratification in causal inference.   Biometrics. 2002;58(1):21-29. doi:10.1111/j.0006-341X.2002.00021.x PubMedGoogle ScholarCrossref
21.
Hernán  MA.  A definition of causal effect for epidemiological research.   J Epidemiol Community Health. 2004;58(4):265-271. doi:10.1136/jech.2002.006361 PubMedGoogle ScholarCrossref
22.
Rothman  KJ, Greenland  S.  Causation and causal inference in epidemiology.   Am J Public Health. 2005;95(suppl 1):S144-S150. doi:10.2105/AJPH.2004.059204 PubMedGoogle ScholarCrossref
23.
Hernán  MA, Robins  JM.  Estimating causal effects from epidemiological data.   J Epidemiol Community Health. 2006;60(7):578-586. doi:10.1136/jech.2004.029496 PubMedGoogle ScholarCrossref
24.
Heckman  JJ.  Econometric causality.   Int Stat Rev. 2008;76(1):1-27. doi:10.1111/j.1751-5823.2007.00024.x Google ScholarCrossref
25.
Hudgens  MG, Halloran  ME.  Toward causal inference with interference.   J Am Stat Assoc. 2008;103(482):832-842. doi:10.1198/016214508000000292 PubMedGoogle ScholarCrossref
26.
Pearl  J.  Causal inference in statistics: an overview.   Statist Serv. 2009;3:96-146.Google Scholar
27.
Pearl  J.  Causality. Cambridge University Press; 2009. doi:10.1017/CBO9780511803161
28.
Angrist  JD, Pischke  JS.  Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton University Press; 2009. doi:10.1515/9781400829828
29.
VanderWeele  TJ.  On the distinction between interaction and effect modification.   Epidemiology. 2009;20(6):863-871. doi:10.1097/EDE.0b013e3181ba333c PubMedGoogle ScholarCrossref
30.
Angrist  JD, Pischke  JS.  The credibility revolution in empirical economics: how better research design is taking the con out of econometrics.   J Econ Perspect. 2010;24(2):3-30. doi:10.1257/jep.24.2.3 Google ScholarCrossref
31.
Rosenbaum  PR.  Design of Observational Studies. Springer; 2010. doi:10.1007/978-1-4419-1213-8
32.
Van der Laan  MJ, Rose  S.  Targeted Learning: Causal Inference for Observational and Experimental Data. Springer; 2011. doi:10.1007/978-1-4419-9782-1
33.
Berzuini  C, Dawid  P, Bernardinell  L, eds.  Causality: Statistical Perspectives and Applications. John Wiley & Sons; 2012. doi:10.1002/9781119945710
34.
Imbens  GW, Rubin  DB.  Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press; 2015. doi:10.1017/CBO9781139025751
35.
Athey  S, Imbens  GW.  The state of applied econometrics: causality and policy evaluation.   J Econ Perspect. 2017;31(2):3-32. doi:10.1257/jep.31.2.3 Google ScholarCrossref
36.
Young  JG, Stensrud  MJ, Tchetgen Tchetgen  EJ, Hernán  MA.  A causal framework for classical statistical estimands in failure-time settings with competing events.   Stat Med. 2020;39(8):1199-1236. doi:10.1002/sim.8471 PubMedGoogle ScholarCrossref
37.
Hernán  MA, Robins  JM.  Causal inference: what if.  Accessed April 24, 2024. https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
38.
Imbens  GW.  Causal inference in the social sciences.  Accessed April 24, 2024. doi:10.1146/annurev-statistics-033121-114601
39.
Greenland  S, Pearl  J, Robins  JM.  Confounding and collapsibility in causal inference.   Stat Sci. 1999;14(1):29-46. doi:10.1214/ss/1009211805Google ScholarCrossref
40.
Greenland  S, Brumback  B.  An overview of relations among causal modelling methods.   Int J Epidemiol. 2002;31(5):1030-1037. doi:10.1093/ije/31.5.1030PubMedGoogle ScholarCrossref
41.
Laan  MJ, Robins  JM.  Unified Methods for Censored Longitudinal Data and Causality. Springer; 2003. doi:10.1007/978-0-387-21700-0
42.
Cochran  WG, Rubin  DB.  Controlling bias in observational studies: a review.   Sankhya Ser A. 1973;35(4):417-446.Google Scholar
43.
Rosenbaum  PR, Rubin  DB.  The central role of the propensity score in observational studies for causal effects.   Biometrika. 1983;70(1):41-55. doi:10.1093/biomet/70.1.41 Google ScholarCrossref
44.
Rosenbaum  PR, Rubin  DB.  Reducing bias in observational studies using subclassification on the propensity score.   J Am Stat Assoc. 1984;79(387):516-524. doi:10.1080/01621459.1984.10478078 Google ScholarCrossref
45.
Manski  CF.  Nonparametric bounds on treatment effects.   Am Econ Rev. 1990;80(2):319-323.Google Scholar
46.
Angrist  J, Imbens  G.  Identification and Estimation of Local Average Treatment Effects. National Bureau of Economic Research Cambridge; 1995. doi:10.3386/t0118
47.
Angrist  JD, Imbens  GW, Rubin  DB.  Identification of causal effects using instrumental variables.   J Am Stat Assoc. 1996;91(434):444-455. doi:10.1080/01621459.1996.10476902 Google ScholarCrossref
48.
Hahn  J.  On the role of the propensity score in efficient semiparametric estimation of average treatment effects.   Econometrica. 1998;66(2):315-331. doi:10.2307/2998560 Google ScholarCrossref
49.
Robins  JM.  Association, causation, and marginal structural models.   Synthese. 1999;121(1-2):151-179. doi:10.1023/A:1005285815569 Google ScholarCrossref
50.
Hahn  J, Todd  P, Van der Klaauw  W.  Identification and estimation of treatment effects with a regression-discontinuity design.   Econometrica. 2001;69(1):201-209. doi:10.1111/1468-0262.00183 Google ScholarCrossref
51.
Hirano  K, Imbens  GW, Ridder  G.  Efficient estimation of average treatment effects using the estimated propensity score.   Econometrica. 2003;71(4):1161-1189. doi:10.1111/1468-0262.00442 Google ScholarCrossref
52.
Imbens  GW.  Nonparametric estimation of average treatment effects under exogeneity: a review.   Rev Econ Stat. 2004;86(1):4-29. doi:10.1162/003465304323023651 Google ScholarCrossref
53.
Lunceford  JK, Davidian  M.  Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study.   Stat Med. 2004;23(19):2937-2960. doi:10.1002/sim.1903 PubMedGoogle ScholarCrossref
54.
Bang  H, Robins  JM.  Doubly robust estimation in missing data and causal inference models.   Biometrics. 2005;61(4):962-973. doi:10.1111/j.1541-0420.2005.00377.x PubMedGoogle ScholarCrossref
55.
Rubin  DB.  Matched Sampling for Causal Effects. Cambridge University Press; 2006. doi:10.1017/CBO9780511810725
56.
Hernán  MA, Robins  JM.  Instruments for causal inference: an epidemiologist’s dream?   Epidemiology. 2006;17(4):360-372. doi:10.1097/01.ede.0000222409.00878.37 PubMedGoogle ScholarCrossref
57.
Robins  JM, Hernán  MA, Brumback  B.  Marginal structural models and causal inference in epidemiology.   Epidemiology. 2000;11(5):550-560. doi:10.1097/00001648-200009000-00011 PubMedGoogle ScholarCrossref
58.
Murphy  SA.  Optimal dynamic treatment regimes.   J R Stat Soc Series B Stat Methodol. 2003;65(2):331-355. doi:10.1111/1467-9868.00389 Google ScholarCrossref
59.
Gelman  A, Meng  XL, eds.  Applied Bayesian Modeling and Causal Inference From Incomplete-Data Perspectives. John Wiley & Sons; 2004. doi:10.1002/0470090456
60.
Athey  S, Imbens  GW.  Identification and inference in nonlinear difference-in-differences models.   Econometrica. 2006;74(2):431-497. doi:10.1111/j.1468-0262.2006.00668.x Google ScholarCrossref
61.
Ho  DE, Imai  K, King  G, Stuart  EA.  Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference.   Polit Anal. 2007;15(3):199-236. doi:10.1093/pan/mpl013 Google ScholarCrossref
62.
Imai  K, King  G, Stuart  EA.  Misunderstandings between experimentalists and observationalists about causal inference.   J R Stat Soc Ser A Stat Soc. 2008;171(2):481-502. doi:10.1111/j.1467-985X.2007.00527.x Google ScholarCrossref
63.
Robins  JM, Hernán  MA.  Estimation of the Causal Effects of Time-Varying Exposures: Longitudinal Data Analysis. Chapman & Hall/CRC; 2008:547-593. doi:10.1201/9781420011579.ch23
64.
Imbens  GW, Lemieux  T.  Regression discontinuity designs: a guide to practice.   J Econom. 2008;142(2):615-635. doi:10.1016/j.jeconom.2007.05.001 Google ScholarCrossref
65.
Sekhon  JS.  Opiates for the matches: matching methods for causal inference.   Annu Rev Polit Sci. 2009;12:487-508. doi:10.1146/annurev.polisci.11.060606.135444 Google ScholarCrossref
66.
Stuart  EA.  Matching methods for causal inference: a review and a look forward.   Stat Sci. 2010;25(1):1-21. doi:10.1214/09-STS313PubMedGoogle ScholarCrossref
67.
Lee  DS, Lemieux  T.  Regression discontinuity designs in economics.   J Econ Lit. 2010;48(2):281-355. doi:10.1257/jel.48.2.281 Google ScholarCrossref
68.
Orellana  L, Rotnitzky  A, Robins  JM.  Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: main content.   Int J Biostat. 2010;6(2):8. doi:10.2202/1557-4679.1200 PubMedGoogle ScholarCrossref
69.
Orellana  L, Rotnitzky  A, Robins  JM.  Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part II: proofs of results.   Int J Biostat. 2010;6(2):9. doi:10.2202/1557-4679.1242 PubMedGoogle ScholarCrossref
70.
Abadie  A, Diamond  A, Hainmueller  J.  Synthetic control methods for comparative case studies: estimating the effect of California’s tobacco control program.   J Am Stat Assoc. 2010;105(490):493-505. doi:10.1198/jasa.2009.ap08746 Google ScholarCrossref
71.
Lechner  M.  The estimation of causal effects by difference-in-difference methods.   Found Trends Econom. 2011;4(3):165-224. doi:10.1561/0800000014Google ScholarCrossref
72.
Hill  JL.  Bayesian nonparametric modeling for causal inference.   J Comput Graph Stat. 2011;20(1):217-240. doi:10.1198/jcgs.2010.08162 Google ScholarCrossref
73.
Tchetgen Tchetgen  EJ, VanderWeele  TJ.  On causal inference in the presence of interference.   Stat Methods Med Res. 2012;21(1):55-75. doi:10.1177/0962280210386779 PubMedGoogle ScholarCrossref
74.
Valeri  L, Vanderweele  TJ.  Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros.   Psychol Methods. 2013;18(2):137-150. doi:10.1037/a0031034 PubMedGoogle ScholarCrossref
75.
Chakraborty  B, Moodie  EEM.  Statistical Methods for Dynamic Treatment Regimes: Reinforcement Learning, Causal Inference, and Personalized Medicine. Springer; 2013. doi:10.1007/978-1-4614-7428-9
76.
VanderWeele  TJ, Knol  MJ.  A tutorial on interaction.   Epidemiol Methods. 2014;3(1):33-72. doi:10.1515/em-2013-0005 Google ScholarCrossref
77.
VanderWeele  T.  Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford University Press; 2015.
78.
Athey  S, Imbens  GW.  Machine learning methods for estimating heterogeneous causal effects.  Published April 2015. Accessed April 23, 2024. https://gsb-faculty.stanford.edu/guido-w-imbens/files/2022/04/3350.pdf
79.
Abadie  A, Imbens  GW.  Matching on the estimated propensity score.   Econometrica. 2016;84(2):781-807. doi:10.3982/ECTA11293 Google ScholarCrossref
80.
Sofer  T, Richardson  DB, Colicino  E, Schwartz  J, Tchetgen Tchetgen  EJ.  On negative outcome control of unobserved confounding as a generalization of difference-in-differences.   Stat Sci. 2016;31(3):348-361. doi:10.1214/16-STS558PubMedGoogle ScholarCrossref
81.
Cain  LE, Robins  JM, Lanoy  E, Logan  R, Costagliola  D, Hernán  MA.  When to start treatment? a systematic approach to the comparison of dynamic regimes using observational data.   Int J Biostat. 2010;6(2):18. doi:10.2202/1557-4679.1212PubMedGoogle ScholarCrossref
82.
Abadie  A, Cattaneo  MD.  Econometric methods for program evaluation.   Annu Rev Econ. 2018;10:465-503. doi:10.1146/annurev-economics-080217-053402 Google ScholarCrossref
83.
Chernozhukov  V, Chetverikov  D, Demirer  M,  et al.  Double/debiased machine learning for treatment and structural parameters.   Econom J. 2018;21(1):C1-C68. doi:10.1111/ectj.12097 Google ScholarCrossref
84.
Miao  W, Geng  Z, Tchetgen Tchetgen  E.  Identifying causal effects with proxy variables of an unmeasured confounder.   Biometrika. 2018;105(4):987-993. doi:10.1093/biomet/asy038 PubMedGoogle ScholarCrossref
85.
Wager  S, Athey  S.  Estimation and inference of heterogeneous treatment effects using random forests.   J Am Stat Assoc. 2018;113(523):1228-1242. doi:10.1080/01621459.2017.1319839 Google ScholarCrossref
86.
Li  F, Morgan  KL, Zaslavsky  AM.  Balancing covariates via propensity score weighting.   J Am Stat Assoc. 2018;113(521):390-400. doi:10.1080/01621459.2016.1260466 PubMedGoogle ScholarCrossref
87.
Künzel  SR, Sekhon  JS, Bickel  PJ, Yu  B.  Metalearners for estimating heterogeneous treatment effects using machine learning.   Proc Natl Acad Sci U S A. 2019;116(10):4156-4165. doi:10.1073/pnas.1804597116 PubMedGoogle ScholarCrossref
88.
Cattaneo  MD, Idrobo  N, Titiunik  R.  A Practical Introduction to Regression Discontinuity Designs: Foundations. Cambridge University Press; 2019. doi:10.1017/9781108684606
89.
Tsiatis  AA.  Dynamic Treatment Regimes: Statistical Methods for Precision Medicine. CRC Press; 2019. doi:10.1201/9780429192692
90.
Fröhlich  M, Frölich  M, Sperlich  S.  Impact Evaluation. Cambridge University Press; 2019. doi:10.1017/9781107337008
91.
Abadie  A.  Using synthetic controls: feasibility, data requirements, and methodological aspects.   J Econ Lit. 2021;59(2):391-425. doi:10.1257/jel.20191450 Google ScholarCrossref
92.
Brumback  BA.  Fundamentals of Causal Inference: With R. Chapman & Hall/CRC; 2021. doi:10.1201/9781003146674
93.
Forastiere  L, Airoldi  EM, Mealli  F.  Identification and estimation of treatment and interference effects in observational studies on networks.   J Am Stat Assoc. 2021;116(534):901-918. doi:10.1080/01621459.2020.1768100 Google ScholarCrossref
94.
Cattaneo  MD, Titiunik  R.  Regression discontinuity designs.   Annu Rev Econ. 2022;14:821-851. doi:10.1146/annurev-economics-051520-021409 Google ScholarCrossref
95.
Roth  J, Sant’Anna  PH, Bilinski  A, Poe  J.  What’s trending in difference-in-differences? a synthesis of the recent econometrics literature.   J Econom. 2023;235(2):2218-2244. doi:10.1016/j.jeconom.2023.03.008 Google ScholarCrossref
96.
Huber  M.  Causal Analysis: Impact Evaluation and Causal Machine Learning With Applications in R. MIT Press; 2023.
97.
Cattaneo  MD, Idrobo  N, Titiunik  R.  A Practical Introduction to Regression Discontinuity Designs: Extensions. Cambridge University Press; 2024. doi:10.1017/9781009441896
98.
Ogburn  EL, Sofrygin  O, Diaz  I, Van der Laan  MJ.  Causal inference for social network data.   J Am Stat Assoc. 2024;119(545):597-611. doi:10.1080/01621459.2022.2131557 Google ScholarCrossref
99.
Rosenbaum  PR.  Model-based direct adjustment.   J Am Stat Assoc. 1987;82(398):387-394. doi:10.1080/01621459.1987.10478441Google ScholarCrossref
100.
Drake  C.  Effects of misspecification of the propensity score on estimators of treatment effect.   Biometrics. 1993;49:1231-1236. doi:10.2307/2532266Google ScholarCrossref
101.
Imbens  G, Angrist  J.  Identification and estimation of local average treatment effects.   Econometrica. 1994;61(2):467-476. doi:10.2307/2951620Google ScholarCrossref
102.
Heckman  JJ, Ichimura  H, Todd  PE.  Matching as an econometric evaluation estimator: evidence from evaluating a job training programme.   Rev Econ Stud. 1997;64(4):605-654. doi:10.2307/2971733Google ScholarCrossref
103.
Heckman  JJ, Vytlacil  EJ.  Local instrumental variables and latent variable models for identifying and bounding treatment effects.   Proc Natl Acad Sci U S A. 1999;96(8):4730-4734. doi:10.1073/pnas.96.8.4730PubMedGoogle ScholarCrossref
104.
Greenland  S.  An introduction to instrumental variables for epidemiologists.   Int J Epidemiol. 2000;29(4):722-729. doi:10.1093/ije/29.4.722PubMedGoogle ScholarCrossref
105.
Rosenbaum  PR.  Covariance adjustment in randomized experiments and observational studies.   Stat Sci. 2002;17(3):286-327. doi:10.1214/ss/1042727942Google ScholarCrossref
106.
Maldonado  G, Greenland  S.  Estimating causal effects.   Int J Epidemiol. 2002;31(2):422-429. doi:10.1093/ije/31.2.422PubMedGoogle ScholarCrossref
107.
Bertrand  M, Duflo  E, Mullainathan  S.  How much should we trust differences-in-differences estimates?   Q J Econ. 2004;119(1):249-275. doi:10.1162/003355304772839588Google ScholarCrossref
108.
Lee  MJ.  Micro-Econometrics for Policy, Program and Treatment Effects. OUP Oxford; 2005. doi:10.1093/0199267693.001.0001
109.
Abadie  A.  Semiparametric difference-in-differences estimators.   Rev Econ Stud. 2005;72(1):1-19. doi:10.1111/0034-6527.00321Google ScholarCrossref
110.
Abadie  A, Imbens  GW.  Large sample properties of matching estimators for average treatment effects.   Econometrica. 2006;74(1):235-267. doi:10.1111/j.1468-0262.2006.00655.xGoogle ScholarCrossref
111.
Van Der Laan  MJ, Rubin  D.  Targeted maximum likelihood learning.   Int J Biostat. 2006;2:1. doi:10.2202/1557-4679.1043Google ScholarCrossref
112.
Petersen  ML, Sinisi  SE, van der Laan  MJ.  Estimation of direct causal effects.   Epidemiology. 2006;17(3):276-284. doi:10.1097/01.ede.0000208475.99429.2dPubMedGoogle ScholarCrossref
113.
Donald  SG, Lang  K.  Inference with difference-in-differences and other panel data.   Rev Econ Stat. 2007;89(2):221-233. doi:10.1162/rest.89.2.221Google ScholarCrossref
114.
Imbens  GW, Wooldridge  JM.  Recent developments in the econometrics of program evaluation.   J Econ Lit. 2009;47(1):5-86. doi:10.1257/jel.47.1.5Google ScholarCrossref
115.
VanderWeele  TJ.  Marginal structural models for the estimation of direct and indirect effects.   Epidemiology. 2009;20(1):18-26. doi:10.1097/EDE.0b013e31818f69cePubMedGoogle ScholarCrossref
116.
van der Laan  MJ, Gruber  S.  Collaborative double robust targeted maximum likelihood estimation.   Int J Biostat. 2010;6(1):17. doi:10.2202/1557-4679.1181PubMedGoogle ScholarCrossref
117.
Austin  PC.  An introduction to propensity score methods for reducing the effects of confounding in observational studies.   Multivariate Behav Res. 2011;46(3):399-424. doi:10.1080/00273171.2011.568786PubMedGoogle ScholarCrossref
118.
Hainmueller  J.  Entropy balancing for causal effects: a multivariate reweighting method to produce balanced samples in observational studies.   Polit Anal. 2012;20(1):25-46. doi:10.1093/pan/mpr025Google ScholarCrossref
119.
Tchetgen Tchetgen  EJ, Shpitser  I.  Semiparametric theory for causal mediation analysis: efficiency bounds, multiple robustness, and sensitivity analysis.   Ann Stat. 2012;40(3):1816-1845. doi:10.1214/12-AOS990PubMedGoogle ScholarCrossref
120.
Daniel  RM, Cousens  SN, De Stavola  BL, Kenward  MG, Sterne  JAC.  Methods for dealing with time-dependent confounding.   Stat Med. 2013;32(9):1584-1618. doi:10.1002/sim.5686PubMedGoogle ScholarCrossref
121.
Austin  PC.  The performance of different propensity score methods for estimating marginal hazard ratios.   Stat Med. 2013;32(16):2837-2849. doi:10.1002/sim.5705PubMedGoogle ScholarCrossref
122.
Belloni  A, Chernozhukov  V, Hansen  C.  High-dimensional methods and inference on structural and treatment effects.   J Econ Perspect. 2014;28(2):29-50. doi:10.1257/jep.28.2.29Google ScholarCrossref
123.
Baiocchi  M, Cheng  J, Small  DS.  Instrumental variable methods for causal inference.   Stat Med. 2014;33(13):2297-2340. doi:10.1002/sim.6128PubMedGoogle ScholarCrossref
124.
Farrell  MH.  Robust inference on average treatment effects with possibly more covariates than observations.   J Econom. 2015;189(1):1-23. doi:10.1016/j.jeconom.2015.06.017Google ScholarCrossref
125.
Zubizarreta  JR.  Stable weights that balance covariates for estimation with incomplete outcome data.   J Am Stat Assoc. 2015;110(511):910-922. doi:10.1080/01621459.2015.1023805Google ScholarCrossref
126.
VanderWeele  TJ.  Mediation analysis: a practitioner’s guide.   Annu Rev Public Health. 2016;37:17-32. doi:10.1146/annurev-publhealth-032315-021402PubMedGoogle ScholarCrossref
127.
Mattei  A, Mealli  F.  Regression discontinuity designs as local randomized experiments.   Obs Stud. 2016;2:156-173.Google Scholar
128.
Ding  P, VanderWeele  TJ.  Sensitivity analysis without assumptions.   Epidemiology. 2016;27(3):368-377. doi:10.1097/EDE.0000000000000457PubMedGoogle ScholarCrossref
129.
VanderWeele  TJ, Tchetgen Tchetgen  EJ.  Mediation analysis with time varying exposures and mediators.   J R Stat Soc Series B Stat Methodol. 2017;79(3):917-938. doi:10.1111/rssb.12194PubMedGoogle ScholarCrossref
130.
Belloni  A, Chernozhukov  V, Fernández-Val  I, Hansen  C.  Program evaluation and causal inference with high-dimensional data.   Econometrica. 2017;85(1):233-298. doi:10.3982/ECTA12723Google ScholarCrossref
131.
Ding  P, Li  F.  Causal inference: a missing data perspective.   Stat Sci. 2018;33(2):214-237. doi:10.1214/18-STS645Google ScholarCrossref
132.
Sant’Anna  PHC, Zhao  J.  Doubly robust difference-in-differences estimators.   J Econom. 2020;219(1):101-122. doi:10.1016/j.jeconom.2020.06.003Google ScholarCrossref
133.
Hahn  PR, Murray  JS, Carvalho  CM.  Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects (with discussion).   Bayesian Anal. 2020;15(3):965-1056. doi:10.1214/19-BA1195Google ScholarCrossref
134.
Arkhangelsky  D, Athey  S, Hirshberg  DA, Imbens  GW, Wager  S.  Synthetic difference-in-differences.   Am Econ Rev. 2021;111(12):4088-4118. doi:10.1257/aer.20190159Google ScholarCrossref
135.
Callaway  B, Sant’Anna  P.  Difference-in-differences with multiple time periods.   J Econom. 2021;225(2):200-230. doi:10.1016/j.jeconom.2020.12.001Google ScholarCrossref
136.
Ben-Michael  E, Feller  A, Rothstein  J.  The augmented synthetic control method.  Accessed April 24, 2024. https://www.nber.org/system/files/working_papers/w28885/w28885.pdf doi:10.3386/w28885
137.
Athey  S, Bayate  M, Doudchenko  N, Imbens  G, Khosravi  K.  Matrix completion methods for causal panel data models.   J Am Stat Assoc. 2021;116:1-15. doi:10.1080/01621459.2021.1891924Google ScholarCrossref
138.
Li  F, Ding  P, Mealli  F.  Bayesian causal inference: a critical review.   Philos Trans A Math Phys Eng Sci. 2023;381(2247):20220153.PubMedGoogle Scholar
139.
Christiansen  S, Iverson  C, Flanagin  A,  et al.  AMA Manual of Style: A Guide for Authors and Editors. 11th ed. Oxford University Press; 2020.
140.
Zaslavsky  AM.  Exploring potential causal inference through natural experiments.   JAMA Health Forum. 2021;2(6):e210289. doi:10.1001/jamahealthforum.2021.0289PubMedGoogle ScholarCrossref
141.
VanderWeele  TJ.  Can sophisticated study designs with regression analyses of observational data provide causal inferences?   JAMA Psychiatry. 2021;78(3):244-246. doi:10.1001/jamapsychiatry.2020.2588 PubMedGoogle ScholarCrossref
142.
Haukoos  JS, Lewis  RJ.  The propensity score.   JAMA. 2015;314(15):1637-1638. doi:10.1001/jama.2015.13480 PubMedGoogle ScholarCrossref
143.
Lipsky  AM, Greenland  S.  Causal directed acyclic graphs.   JAMA. 2022;327(11):1083-1084. doi:10.1001/jama.2022.1816 PubMedGoogle ScholarCrossref
144.
Hernán  MA, Wang  W, Leaf  DE.  Target trial emulation: a framework for causal inference from observational data.   JAMA. 2022;328(24):2446-2447. doi:10.1001/jama.2022.21383 PubMedGoogle ScholarCrossref
145.
Thomas  L, Li  F, Pencina  M.  Using propensity score methods to create target populations in observational clinical research.   JAMA. 2020;323(5):466-467. doi:10.1001/jama.2019.21558 PubMedGoogle ScholarCrossref
146.
Niknam  BA, Zubizarreta  JR.  Using cardinality matching to design balanced and representative samples for observational studies.   JAMA. 2022;327(2):173-174. doi:10.1001/jama.2021.20555 PubMedGoogle ScholarCrossref
147.
Thomas  LE, Li  F, Pencina  MJ.  Overlap weighting: a propensity score method that mimics attributes of a randomized clinical trial.   JAMA. 2020;323(23):2417-2418. doi:10.1001/jama.2020.7819 PubMedGoogle ScholarCrossref
148.
Maciejewski  ML, Basu  A.  Regression discontinuity design.   JAMA. 2020;324(4):381-382. doi:10.1001/jama.2020.3822 PubMedGoogle ScholarCrossref
149.
Maciejewski  ML, Dowd  BE, Norton  EC.  Instrumental variables and heterogeneous treatment effects.   JAMA. 2022;327(12):1177-1178. doi:10.1001/jama.2022.2505 PubMedGoogle ScholarCrossref
150.
Emdin  CA, Khera  AV, Kathiresan  S.  Mendelian randomization.   JAMA. 2017;318(19):1925-1926. doi:10.1001/jama.2017.17219 PubMedGoogle ScholarCrossref
151.
Dimick  JB, Ryan  AM.  Methods for evaluating changes in health care policy: the difference-in-differences approach.   JAMA. 2014;312(22):2401-2402. doi:10.1001/jama.2014.16153PubMedGoogle ScholarCrossref
152.
Rothman  K.  Modern Epidemiology. Little Brown & Co; 1986:77.
153.
Savitz  DARE.  Re: “Associations are not effects”.   Am J Epidemiol. 1991;134(4):442-444. doi:10.1093/oxfordjournals.aje.a116110 PubMedGoogle ScholarCrossref
154.
Hernán  MA.  The C-word: scientific euphemisms do not improve causal inference from observational data.   Am J Public Health. 2018;108(5):616-619. doi:10.2105/AJPH.2018.304337 PubMedGoogle ScholarCrossref
155.
Rosenbaum  PR.  Discussing hidden bias in observational studies.   Ann Intern Med. 1991;115(11):901-905. doi:10.7326/0003-4819-115-11-901 PubMedGoogle ScholarCrossref
156.
Petersen  ML, van der Laan  MJ.  Causal models and learning from data: integrating causal modeling and statistical estimation.   Epidemiology. 2014;25(3):418-426. doi:10.1097/EDE.0000000000000078 PubMedGoogle ScholarCrossref
157.
Glass  TA, Goodman  SN, Hernán  MA, Samet  JM.  Causal inference in public health.   Annu Rev Public Health. 2013;34:61-75. doi:10.1146/annurev-publhealth-031811-124606 PubMedGoogle ScholarCrossref
158.
Dang  LE, Gruber  S, Lee  H,  et al.  A causal roadmap for generating high-quality real-world evidence.   J Clin Transl Sci. 2023;7(1):e212. doi:10.1017/cts.2023.635PubMedGoogle ScholarCrossref
159.
Guyatt  G, Meade  MO, Agoritsas  T, Richardson  WS, Jaeschke  R. What is the question? In: Guyatt  G, Rennie  D, Meade  MO, Cook  DJ, eds.  Users’ Guides to the Medical Literature: A Manual for Evidence-Based Clinical Practice. 3rd ed. McGraw-Hill; 2008:17-28.
160.
Stoto  M, Oakes  M, Stuart  E, Savitz  L, Priest  EL, Zurovac  J.  Analytical methods for a learning health system, 1: framing the research question.   EGEMS (Wash DC). 2017;5(1):28. doi:10.5334/egems.250 PubMedGoogle ScholarCrossref
161.
US Department of Health and Human Services; Food and Drug Administration; Center for Drug Evaluation and Research (CDER); Center for Biologics Evaluation and Research (CBER).  E9(R1) statistical principles for clinical trials: addendum: estimands and sensitivity analysis in clinical trials: guidance for industry.  Accessed April 24, 2024. https://www.fda.gov/media/148473/download
162.
Little  RJ, Lewis  RJ.  Estimands, estimators, and estimates.   JAMA. 2021;326(10):967-968. doi:10.1001/jama.2021.2886 PubMedGoogle ScholarCrossref
163.
Dawid  AP.  Causal inference without counterfactuals.   J Am Stat Assoc. 2000;95(450):407-424. doi:10.1080/01621459.2000.10474210 Google ScholarCrossref
164.
Robins  JM, Greenland  S.  Causal inference without counterfactuals: comment.   J Am Stat Assoc. 2000;95(450):431-435. doi:10.1080/01621459.2000.10474214Google ScholarCrossref
165.
Pearl  J.  Causal diagrams for empirical research.   Biometrika. 1995;82(4):669-688. doi:10.1093/biomet/82.4.669 Google ScholarCrossref
166.
Greenland  S, Pearl  J, Robins  JM.  Causal diagrams for epidemiologic research.   Epidemiology. 1999;10(1):37-48. doi:10.1097/00001648-199901000-00008 PubMedGoogle ScholarCrossref
167.
Richardson  TS, Robins  JM.  Single world intervention graphs (SWIGs): a unification of the counterfactual and graphical approaches to causality.  Center for Statistics and the Social Sciences working paper 128. April 2013. Accessed April 23, 2024. https://csss.uw.edu/research/working-papers/single-world-intervention-graphs-swigs-unification-counterfactual-and
168.
Spirtes  P, Glymour  CN, Scheines  R.  Causation, Prediction, and Search. MIT Press; 2000.
169.
Ogburn  EL, VanderWeele  TJ.  Causal diagrams for interference.   Stat Sci. 2014;29(4):559-578. doi:10.1214/14-STS501 Google ScholarCrossref
170.
Hernán  MA, Robins  JM.  Using big data to emulate a target trial when a randomized trial is not available.   Am J Epidemiol. 2016;183(8):758-764. doi:10.1093/aje/kwv254 PubMedGoogle ScholarCrossref
171.
Rubin  DB.  The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials.   Stat Med. 2007;26(1):20-36. doi:10.1002/sim.2739 PubMedGoogle ScholarCrossref
172.
Rubin  DB.  For objective causal inference, design trumps analysis.   Ann Appl Stat. 2008;2(3):808-840. doi:10.1214/08-AOAS187Google ScholarCrossref
173.
Hernán  MA, Sauer  BC, Hernández-Díaz  S, Platt  R, Shrier  I.  Specifying a target trial prevents immortal time bias and other self-inflicted injuries in observational analyses.   J Clin Epidemiol. 2016;79:70-75. doi:10.1016/j.jclinepi.2016.04.014 PubMedGoogle ScholarCrossref
174.
VanderWeele  TJ.  Principles of confounder selection.   Eur J Epidemiol. 2019;34(3):211-219. doi:10.1007/s10654-019-00494-6 PubMedGoogle ScholarCrossref
175.
Robins  JM.  Data, design, and background knowledge in etiologic inference.   Epidemiology. 2001;12(3):313-320. doi:10.1097/00001648-200105000-00011 PubMedGoogle ScholarCrossref
176.
Hernán  MA, Hernández-Díaz  S, Werler  MM, Mitchell  AA.  Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology.   Am J Epidemiol. 2002;155(2):176-184. doi:10.1093/aje/155.2.176 PubMedGoogle ScholarCrossref
177.
Manski  CF.  Partial Identification of Probability Distributions. Springer; 2003.
178.
Balke  A, Pearl  J.  Bounds on treatment effects from studies with imperfect compliance.   J Am Stat Assoc. 1997;92(439):1171-1176. doi:10.1080/01621459.1997.10474074 Google ScholarCrossref
179.
Manski  CF.  Patient Care Under Uncertainty. Princeton University Press; 2019.
180.
Imbens  GW.  Potential outcome and directed acyclic graph approaches to causality: relevance for empirical practice in economics.   J Econ Lit. 2020;58(4):1129-1179. doi:10.1257/jel.20191597 Google ScholarCrossref
181.
Angrist  JD, Krueger  AB. Empirical strategies in labor economics. In: Ashenfelter  OC, Card  D, eds.  Handbook of Labor Economics. Vol 3. Elsevier; 1999:1277-1366.
182.
Greenland  S, Senn  SJ, Rothman  KJ,  et al.  Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations.   Eur J Epidemiol. 2016;31(4):337-350. doi:10.1007/s10654-016-0149-3 PubMedGoogle ScholarCrossref
183.
Lawlor  DA, Tilling  K, Davey Smith  G.  Triangulation in aetiological epidemiology.   Int J Epidemiol. 2016;45(6):1866-1886.PubMedGoogle Scholar
184.
Lipsitch  M, Tchetgen Tchetgen  E, Cohen  T.  Negative controls: a tool for detecting confounding and bias in observational studies.   Epidemiology. 2010;21(3):383-388. doi:10.1097/EDE.0b013e3181d61eeb PubMedGoogle ScholarCrossref
185.
Greenland  S.  Basic methods for sensitivity analysis of biases.   Int J Epidemiol. 1996;25(6):1107-1116. doi:10.1093/ije/25.6.1107 PubMedGoogle ScholarCrossref
186.
Robins  JM, Rotnitzky  A, Scharfstein  DO. Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In: Halloran  ME, Berry  D, eds.  Statistical Models in Epidemiology, the Environment, and Clinical Trials. Springer; 2000:1-94. doi:10.1007/978-1-4612-1284-3_1
187.
Lash  TL, Fox  MP, MacLehose  RF, Maldonado  G, McCandless  LC, Greenland  S.  Good practices for quantitative bias analysis.   Int J Epidemiol. 2014;43(6):1969-1985. doi:10.1093/ije/dyu149 PubMedGoogle ScholarCrossref
188.
VanderWeele  TJ, Ding  P.  Sensitivity analysis in observational research: introducing the E-value.   Ann Intern Med. 2017;167(4):268-274. doi:10.7326/M16-2607 PubMedGoogle ScholarCrossref
189.
Lash  TL, Fox  MP, Fink  AK.  Applying Quantitative Bias Analysis to Epidemiologic Data. Springer; 2009. doi:10.1007/978-0-387-87959-8
190.
Vanderweele  TJ, Arah  OA.  Bias formulas for sensitivity analysis of unmeasured confounding for general outcomes, treatments, and confounders.   Epidemiology. 2011;22(1):42-52. doi:10.1097/EDE.0b013e3181f74493PubMedGoogle ScholarCrossref
191.
MacLehose  RF, Ahern  TP, Lash  TL, Poole  C, Greenland  S.  The importance of making assumptions in bias analysis.   Epidemiology. 2021;32(5):617-624. doi:10.1097/EDE.0000000000001381 PubMedGoogle ScholarCrossref
192.
Toh  S, Hernán  MA.  Causal inference from longitudinal studies with baseline randomization.   Int J Biostat. 2008;4(1):22. doi:10.2202/1557-4679.1117 PubMedGoogle ScholarCrossref
193.
Hernán  MA, Robins  JM.  Per-protocol analyses of pragmatic trials.   N Engl J Med. 2017;377(14):1391-1398. doi:10.1056/NEJMsm1605385 PubMedGoogle ScholarCrossref
194.
Rosenbaum  PR.  Transparency: Design of Observational Studies. Springer; 2020:175-177. doi:10.1007/978-3-030-46405-9_6
195.
Cox  DR.  Applied statistics: a review.   Ann Appl Stat. 2007;1(1):1-16. doi:10.1214/07-AOAS113Google ScholarCrossref
196.
Greenland  S.  Invited commentary: the need for cognitive science in methodology.   Am J Epidemiol. 2017;186(6):639-645. doi:10.1093/aje/kwx259 PubMedGoogle ScholarCrossref
×